Everybody knows that digital technology has revolutionized our economy and our lifestyles. But how many of us really understand the drivers behind the technology – the significance of going digital; the miniaturization of electronic devices; the role of venture capital in financing the revolution; the importance of research and development? How many of us understand what it takes to make money from innovative technologies? Should we worry about manufacturing going offshore? What is the role of India and China in the digital economy? Drawing on a lifetime’s experience in the industry, as an engineer, a senior manager, and as a partner in a global venture capital firm, Henry Kressel offers an expert personalized answer to all these questions. He explains how the technology works, why it matters, how it is financed, and what the key lessons are for public policy.

Henry Kressel is a Managing Director of Warburg Pincus, LLC. He began his career at RCA Laboratories where he pioneered the first practical semiconductor lasers. He was the founding president of the IEEE Laser and Electro-Optics Society (LEOS) and co-founded the IEEE/OSA Journal of Lightwave Technology. He is the recipient of many awards and honors, a fellow of the American Physical Society and of the IEEE, and the holder of thirty-one issued US patents for electronic and optoelectronics devices.

Thomas V. Lento is founder and President of Intercomm, Inc., a corporate communications consultancy.
Competing for the future

How digital innovations are changing the world

HENRY KRESSEL
WITH
THOMAS V. LENTO
For Bertha
Contents

List of figures
List of tables
Acknowledgements

Introduction 1

Part I The technology – how electronic devices work – digital systems and software 7
1 Genesis: Inventing electronics for the digital world 9
2 Building digital systems 56

Part II Innovators, entrepreneurs, and venture capitalists 99
3 Edison’s legacy: Industrial R&D 101
4 R&D goes global 122
5 Financing innovation: Venture capital 175

Part III Global reach, global repercussions 215
6 Manufacturing: Globalizing faster than ever 217
7 Your government is here to help 258
8 The digital world: Industries transformed 290
9 The digital world: A global village 332

Appendix 1.1: Smaller, faster, more efficient MOSFETs 347
Appendix 1.2: Building multi-transistor logic gates 355
Appendix 1.3: MOSFETs in memory devices 357
Appendix 1.4: CMOS reduces logic gate power dissipation 359
Appendix 1.5: Laser diode basics 362
Appendix 1.6: Light-emitting diodes (LEDs) 367
Appendix 1.7: Photodetectors 370
Appendix 1.8: Making fiber optic cables 372
Appendix 1.9: Principles of LCD displays 374
Appendix 2.1: The demise of analog computers 377
Appendix 2.2: IP, TCP, and the Internet 381
Appendix 2.3: Building an object-oriented program 383

Index 386
Figures

1.1 The evolution of vacuum tubes by miniaturization. The third tube from the left is the RCA Nuvistor. To the right of the Nuvistor is the first RCA mass-produced silicon transistor (2N2102) (David Sarnoff Library, ref. 4).

1.2 The two states of a p-n junction. (a) Forward-biased p-n junction showing current flow as a function of voltage; (b) reverse-biased p-n junction showing current being blocked until avalanche voltage is reached.

1.3 MOSFET structure showing the various layers. The dimension L is the gate length, a key element in controlling device performance. Copyright © 1990 John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons, Inc. (ref. 9).

1.4 Gate length reduction over time. Lithography is the technology used to define the transistor feature size in manufacturing. Copyright © 2005 UBS. All rights reserved. Reprinted with permission from UBS (ref. 11).

1.5 The three basic gates. (a) The NOT gate (inverter); (b) the AND gate; and (c) the OR gate. Courtesy of Texas Instruments (ref. 14).

1.6 Cost per megabyte of magnetic disk storage over time. Reprinted with permission from Computer science: Reflections on the field, reflections from the field. Copyright © 2004 by the National Academy of Sciences, courtesy of the National Academies Press, Washington, DC (ref. 17).

1.7 Historical trend in the gallium arsenide and heterojunction aluminum gallium arsenide laser diode threshold current density at room temperature. Technological improvements after 1975 focused on heterojunction lasers of indium
1.8 Schematic of a simple double heterojunction laser diode structure showing light beam emitted under stripe contact 10 microns wide. The front and back of the structure constitute the two surfaces of the Fabry-Perot cavity. Reprinted with permission from Physics Today. Copyright © 1976, American Institute of Physics (ref. 25).

1.9 A laser diode packaged in a metal case with a glass face for the emitted radiation.

1.10 Spectral loss data for silica optical fibers over time. The heterojunction lasers used in communications systems emit in the 1.55 microns region. Reprinted with permission from Lasers: Invention to applications. Copyright © 1987 by the National Academy of Sciences, courtesy of the National Academies Press, Washington, DC (ref. 31).

1.11 Historical reduction in the cost of a fiber-meter of single-mode optical fiber. Figure courtesy of KMI Research, www.kmi.research.com (ref. 32).

1.12 (a) Two types of imagers. Left, CCD and right, CMOS-based with MOSFETs incorporated into pixels. Reprinted with permission from D. Litwiller, DALSA (ref. 35).

1.12 (b) Architecture of simple imaging system using a CCD imager. Reprinted with permission from D. Litwiller, DALSA (ref. 36).

1.13 Flat-panel display sales surpassed cathode-ray tube (CRT) sales in 2002. Reprinted with permission from DisplaySearch, an NPD Group company (ref. 40).

1.14 Price of 45-inch LCD TV display over time. Reprinted with permission from IBS (ref. 41).

2.1 Integrated circuit market segments between 1999 and 2005, and projected to 2010. Microprocessors are included in the “MOS Micro” segment (from IBS, ref. 3).

2.2 Extrapolation (dashed lines) of processor switching power dissipation and leakage current-related power
dissipation. Fit line replotted (solid line) and extrapolated (dashed line) with G. Moore’s presentation in 2003 (see ref. 3). The crossing of the extrapolated lines indicates that the leakage current power dissipation is progressively dominant from around 2002–2003. Copyright © 2005 IEEE (from Gea-Banacloche and Kish, “Future directions in electronic computing,” ref. 6).

2.3 Historical relative cost of three elements of computing systems: magnetic disk storage, DRAM, and microprocessor performance. Reprinted with permission from Mashey, TechViser (ref. 12).

2.4 US national communications channel capacity improvement as a function of time. Note the discontinuous change in the average slope with the introduction of optical fiber systems. Reprinted with permission from Lasers: Invention to applications. Copyright © 2004 by the National Academy of Sciences, courtesy of the National Academies Press, Washington, DC (ref. 14).

2.5 AT&T telephone switchboard operators (property of AT&T Archives. Reprinted with permission of AT&T).

2.6 Recent and anticipated growth of VoIP customers in the US. These numbers are most likely understated given the VoIP service of Skype and of companies such as Google and Yahoo! Reprinted with permission from Bear Stearns (ref. 21).

2.7 Historical software investments in the US since 1993 (from SG Cowen, Perspectives, ref. 31).

3.1 Dr. S. Cherukuri’s curve of product maturity over time showing the process from concept to obsolescence. Reprinted with permission from S. Cherukuri, Sarnoff (ref. 3).

3.2 Trade balance in R&D-intensive electronics sectors, 1970–1989. This group of sectors includes data processing equipment, electronic components, and telecommunications equipment. Standardized trade balances are expressed as a percentage of total world trade in R&D-intensive electronics sectors. For methods
and sources, see ref. 8. Reprinted with permission from Linking trade and technology policies. Copyright © 1992 by the National Academy of Sciences, courtesy of the National Academies Press, Washington, DC (ref. 8).

4.1 The self-reinforcing advantage of high-tech industries. Reprinted with permission from Linking trade and technology policies: An international comparison of the policies of industrialized nations. Copyright © 1992 by the National Academy of Sciences, courtesy of the National Academies Press, Washington, DC (ref. 7).

4.2 Degrees awarded in science and engineering (S&E) as a percentage of new degrees in 2001 (from OECD, Science, technology and industry outlook, ref. 10).

4.3 Percentage of foreign students in tertiary education by country of study in 2002. Copyright © 2005 The Economist Newspaper Ltd. All rights reserved. Reprinted with permission. Further reproduction prohibited; www.economist.com (ref. 15).

4.4 Computer science (CS) listed as probable major among incoming freshmen since 1971 in the US. Reprinted from “President’s letter,” Communications of the ACM, 48:9, September 2005. Figure reprinted with permission from the Higher Education Research Institute (HERI) (ref. 18).

4.6 Division of programs at Taiwan’s Industrial Technology Research Institute (ITRI) in 2003. Reprinted with permission from ITRI (ref. 28).

4.7 Educational background of the staff of Taiwan’s Industrial Technology Research Institute (ITRI) in 2003. Reprinted with permission from ITRI (ref. 28).

4.8 Funds provided by US federal agencies to universities and colleges for conduct of R&D in fiscal year 2002. Copyright © 2004 by Rand Corporation. Reproduced
List of figures

4.10 (b) The changing sources of publications in the physical sciences and engineering in two publications, Applied Physics Letters and Electronics Letters, between 1988 and 2004 by the nature of the authors’ institution.

4.11 (a) The changing sources of publications on software in the IEEE Transactions on Software Engineering and Communications of the ACM between 1988 and 2004 by country or region of origin.

4.11 (b) The changing sources of publications on software in the IEEE Transactions on Software Engineering and Communications of the ACM between 1988 and 2004 by the nature of the authors’ institution.

5.1 (a) Capital commitments to US venture funds ($ billions) – 1979–2005. Reprinted with permission from NVCA (ref. 5).

5.1 (b) Investments to portfolio companies ($ billions) – 1979–2005. Reprinted with permission from NVCA (ref. 5).

5.2 Venture capital investments in 2005 – by industry sector. Reprinted with permission from NVCA (ref. 10).

5.5 The “Bubble” in the US Telecom Networking Index October 1998 to October 2001. From BigCharts.com quoted by Dr. A. Bergh; reprinted with permission from OID (ref. 15).
List of figures

5.6 Venture-backed IPOs showing number of IPOs and total amount raised. Reprinted with permission from NVCA (ref. 19).

5.8 Venture capital raised by high-tech companies in various countries (2002–2004). Reprinted with permission from Israel Venture Capital (ref. 22).

6.1 Early growth apparatus for liquid phase epitaxy of semiconductor lasers developed at RCA Laboratories in the early 1960s. From Nelson, “Epitaxial growth.” Photo courtesy A. Magoun, David Sarnoff Library (ref. 6).

6.2 Automated fabrication equipment used to manufacture semiconductor lasers. Photo courtesy Sarnoff Corporation (ref. 7).

6.3 Low absorption optical fiber demand by region (1998–2009). Values beyond 2004 are estimated. Figure courtesy KMI Research, www.kmiresearch.com (ref. 11).

6.5 Estimated manufacturing cost of 300 mm CMOS wafer in various geographies in 2005 (from Jones, IBS, ref. 14).

6.6 Large-panel liquid crystal display (LCD) production by country and by year. Reprinted with permission from Displaybank (ref. 20).

6.7 The production value of Taiwan’s photonics from 2003 (ref. 21).

7.1 Software patents granted in the US by grant date (1976–2002). The data comes from the USPTO as computed by Hunt and Bessen, “Software patent experiment.” Reprinted with permission from the Federal Reserve Bank of Philadelphia (ref. 8).

7.2 The percentage of patents granted in a year that are software patents (1976–2002). The data comes from the
List of figures

USPTO as computed by Hunt and Bessen, “Software patent experiment.” Reprinted with permission from the Federal Reserve Bank of Philadelphia (ref. 9).

7.3 Federal district court patent lawsuits terminated by fiscal year. “Terminated” includes judgments, dismissals, settlements, transfers, and remands. From Merrill, Levin, and Myers (eds.), A patent system (ref. 14).

8.1 Penetration rate of some major consumer products in the US since 1947. Reprinted with permission from the IDC and the Consumer Electronics Association (CEA) (ref. 18).

8.2 Entertainment content that can be stored on a 160 gigabyte (GB) hard drive. Reprinted with permission from Parks Associates (ref. 27).

8.3 Global online commerce since 2000 showing the dollars of sales and the per cent of online users that shop on the Internet. Reprinted with permission from Bear Stearns (ref. 33).

8.4 The number of transistors per person on the planet. Data from US Census Bureau and Semiconductor Industry Association (SIA) (ref. 47).

8.5 The worldwide (WW) sales of semiconductor devices and the fraction that they represent of electronic systems sales. The dotted line shows the average trend. Copyright © 2006 UBS. All rights reserved. Reprinted with permission from UBS (ref. 48).

8.6 Estimated percentage of semiconductor devices used in major electronic product sectors (2004). Copyright © 2006 UBS. All rights reserved. Reprinted with permission from UBS (ref. 49).

8.7 Electronic products represent an increasing share of the world’s GDP. Copyright © 2006 UBS. All rights reserved. Reprinted with permission from UBS (ref. 53).
9.1 Fraction of world trade in high-tech products in 1980 and 2003 by region of origin (from www.futureofinnovation.org, “The knowledge economy,” ref. 1. Updates of the 2001 data to 2003 have been provided by the American Physical Society (APS)).

9.2 Semiconductor device sales by region as a percentage of total worldwide semiconductor sales since 2001. Copyright © 2006 UBS. All rights reserved. Reprinted with permission from UBS (ref. 2).

9.3 Trade balance in high-tech products of the US 1990–2005 (from www.futureofinnovation.org, “The knowledge economy,” ref. 6. Updates of the 2001 data to 2005 have been provided by the American Physical Society (APS)).

A-1.1.1 Operation of n-p-n bipolar transistor. (a) Current flow as emitter-to-base p-n junction is forward-biased. The base to collector p-n junction is reverse-biased. (b) Opening and closing switch turns transistor on and off.

A-1.1.2 Schematic of elementary n-channel MOSFET (metal oxide semiconductor field-effect transistor). (a) Gate voltage is 0 and device is off; (b) 10 volts applied to gate turns the device on. Courtesy of Texas Instruments (ref. 2).

A-1.2.1 NAND gate input using n-channel MOSFETs. Courtesy of Texas Instruments (ref. 1).

A-1.3.1 Schematic of basic MOSFET structure for non-volatile memory devices. Reprinted with permission from R. Zaks (ref. 2).

A-1.4.1 Inverter using n-channel MOSFETs. Courtesy of Texas Instruments (ref. 1).

A-1.4.2 Inverter using CMOS structure.
A-1.5.1 (a) Homojunction and (b) double-heterojunction laser diode structures showing the recombination region layer of thickness d.

A-1.5.2 Schematic cross-section of a double-heterojunction laser showing the refractive index distribution perpendicular to the junction plane and intensity distribution of the fundamental transverse mode with a fraction K of the radiant energy within the recombination region of width d.

A-1.6.1 Improvement in visible LED efficiency since the 1960s. LEDs have averaged efficiency improvements of ~10x/decade over this time frame. Today’s devices are significantly more efficient than unfiltered incandescents with the best devices approaching fluorescent lamp efficiencies. Reprinted with permission from *physica status solidi (a)* and F. Steranka. Copyright © 2002 Wiley-VCH Verlag GmbH & Co. KG (ref. 1).

A-1.7.1 P-n junction used as light detector. (a) In the dark (no current); (b) with incident light which results in current flow proportional to light intensity.

A-1.8.1 Three types of optical fibers. (a) Multimode fiber; (b) single-mode fiber; and (c) multimode graded-index fiber. Reprinted with permission from *Physics Today*. Copyright © 1976 American Institute of Physics (ref. 1).

A-2.1.1 (a) A sine wave; (b) sampling the sine wave; (c) quantizing the samples to 3 bits which produces eight distinct values for each sample. Copyright © 1996 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ (ref. 2).

A-2.3.1 Organization of program using “conventional” algorithmic architecture, to be compared to Figure A-2.3.2. Booch, *Object solutions*, p. 15 figure 1–2, Copyright © 1991 Pearson Education, Inc. Reproduced by permission of Pearson Education, Inc. All rights reserved (ref. 1).
A-2.3.2 Organizing the same program as shown in Figure A-2.3.1 using object-oriented architecture. Booch, *Object solutions*, p. 16 figure 1–3, Copyright © 1991 Pearson Education, Inc. Reproduced by permission of Pearson Education, Inc. All rights reserved (ref. 2).
Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Key device innovations</td>
<td>16</td>
</tr>
<tr>
<td>1.2</td>
<td>Intel microprocessor timeline</td>
<td>29</td>
</tr>
<tr>
<td>1.3</td>
<td>Price per gigabyte of storage</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Annual engineering costs</td>
<td>134</td>
</tr>
<tr>
<td>4.2</td>
<td>National R&D expenditures for 1981 and 2002</td>
<td>140</td>
</tr>
<tr>
<td>4.3</td>
<td>Government budget appropriations</td>
<td>142</td>
</tr>
<tr>
<td>4.4</td>
<td>The world's top universities and annual R&D funding from US government</td>
<td>155</td>
</tr>
<tr>
<td>4.5</td>
<td>Patents simultaneously filed in Europe, US, and Japan</td>
<td>168</td>
</tr>
<tr>
<td>4.6</td>
<td>Number of patents applied for in Japan in 2004</td>
<td>169</td>
</tr>
<tr>
<td>5.1</td>
<td>Internet-related investments</td>
<td>193</td>
</tr>
<tr>
<td>5.2</td>
<td>Five-year rolling averages: Rates of return</td>
<td>194</td>
</tr>
<tr>
<td>5.3a</td>
<td>Selected industry pioneers</td>
<td>202</td>
</tr>
<tr>
<td>5.3b</td>
<td>Selected industry innovators</td>
<td>203</td>
</tr>
<tr>
<td>5.4</td>
<td>Venture-backed IPOs vs. all IPOs</td>
<td>205</td>
</tr>
<tr>
<td>6.1</td>
<td>Fully-burdened hourly labor costs (2005)</td>
<td>241</td>
</tr>
<tr>
<td>7.1</td>
<td>Software-protection techniques in the US</td>
<td>270</td>
</tr>
</tbody>
</table>
The idea for this book has its origins in a visit to the University of Cambridge in 2005, hosted by Professor Ian Leslie, Pro-Vice-Chancellor (Research). I am very grateful for the insights I gained from him regarding the technology programs at the university. I met some of the faculty and students of the Cavendish Laboratory, a place where so much of the world’s basic scientific work was accomplished. I also visited a number of entrepreneurial companies founded to commercialize the innovations that grew out of university research. I am indebted to Lord Broers, former vice-chancellor of the university, and to my partner Dr. William H. Janeway, Chairman of Cambridge in America for making the appropriate introductions to facilitate my visit and the many valuable discussions.

These visits called to mind the long chain, bridging the centuries, that links fundamental scientific discovery to technological advances. This process has accelerated dramatically in the twentieth century, allowing digital technologies to transform the modern world in a remarkably short time. Why and how this has happened, and the consequences of the transformation, are among the topics that I have explored in this book.

In deciding to write this book, I have been fortunate in working with Thomas V. Lento, without whom it would not have been completed. His collaboration was critical in shaping its contents.

This book also reflects my experience over the years from collaborations in venture investments with my partners at Warburg Pincus: Lionel I. Pincus, John L. Vogelstein, Dr. William H. Janeway, Joseph P. Landy, Charles R. Kaye, Jeffrey A. Harris, Dr. Harold Brown, Bilge Ogut, Beau Vrolyk, Cary J. Davis, James Neary, Patrick T. Hackett, Henry B. Schacht, Steven G. Schneider, Stewart Gross, Robert Hillas, Dr. Nancy Martin, Julie Johnson Staples, Andrew Gaspar, Christopher W. Brody, and Frank M. Brochin.

My knowledge of China was built up over the years in collaboration with the Warburg Pincus team in Hong Kong – Chang Q. Sun, Jeff Leng and Julian Cheng.
Dr. Peter D. Scovell and Dr. Stanley Raatz greatly enhanced the accuracy of the material through their perceptive reading of the manuscript, and Chris Harrison, my editor at Cambridge University Press, provided essential guidance for refining its presentation.

In my early technical career I had the good fortune to work with many talented collaborators at RCA. These included Dr. Adolph Blicher, Herbert Nelson, Benjamin Jacoby, Dr. Jim J. Tietjen, Dr. Harry F. Lockwood, Dr. Michael Ettenberg, Frank Hawrylo, and Ivan Ladany. More recently, I have greatly benefited from my work with SRI International headed by Dr. Curt Carlson and Sarnoff Corporation staff, in particular Dr. Satyam Cherukuri.

Finally, I am very grateful to Tina Nuss for her extraordinary work in preparing and proofreading the manuscript.