OPTIMIZATION METHODS IN FINANCE

Optimization models are playing an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance ranging from asset allocation to risk management, from option pricing to model calibration more efficiently and more accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance.

The reader is guided through the solution of asset/liability cash flow matching using linear programming techniques, which are also used to explain asset pricing and arbitrage. Volatility estimation is discussed using nonlinear optimization models. Quadratic programming formulations are provided for portfolio optimization problems based on a mean-variance model, for returns-based style analysis and for risk-neutral density estimation. Conic optimization techniques are introduced for modeling volatility constraints in asset management and for approximating covariance matrices. For constructing an index fund, the authors use an integer programming model. Option pricing is presented in the context of dynamic programming and so is the problem of structuring asset backed securities. Stochastic programming is applied to asset/liability management, and in this context the notion of Conditional Value at Risk is described. The final chapters are devoted to robust optimization models in finance.

The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.

GERARD CORNUEJOLS is an IBM University Professor of Operations Research at the Tepper School of Business, Carnegie Mellon University

REHA TÜTÜNCÜ is a Vice President in the Quantitative Resources Group at Goldman Sachs Asset Management, New York

Mathematics, Finance and Risk

Editorial Board

Mark Broadie, Graduate School of Business, Columbia University Sam Howison, Mathematical Institute, University of Oxford Neil Johnson, Centre for Computational Finance, University of Oxford George Papanicolaou, Department of Mathematics, Stanford University

Already published or forthcoming

1. The Concepts and Practice of Mathematical Finance, by Mark S. Joshi

2. C++ Design Patterns and Derivatives Pricing, by Mark S. Joshi

3. Volatility Perturbations for Equity, Fixed Income and Credit Derivative, by Jean-Pierre Fouque, George Papanicolaou, Ronnie Sircar and Knut Solna

4. Continuous Time Approach to Financial Volatility, by Ole Barndorff-Nielsen and Neil Shephard

5. Optimization Methods in Finance, by Gerard Cornuejols and Reha Tütüncü

6. Modern Interest Rate Theory, by D.C. Brody and L.P. Hughston

OPTIMIZATION METHODS IN FINANCE

GERARD CORNUEJOLS

Carnegie Mellon University

REHA TÜTÜNCÜ

Goldman Sachs Asset Management

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521861700

© Gerard Cornuejols and Reha Tütüncü 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN-13 978-0-521-86170-0 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Julie and to Paz

Contents

	<i>Foreword pag</i>				
1	Introduction				
	1.1	Optimization problems	1		
	1.2	Optimization with data uncertainty	5		
	1.3	Financial mathematics	8		
2	Linea	ar programming: theory and algorithms	15		
	2.1	The linear programming problem	15		
	2.2	Duality	17		
	2.3	Optimality conditions	21		
	2.4	The simplex method	23		
3	LP m	odels: asset/liability cash-flow matching	41		
	3.1	Short-term financing	41		
	3.2	Dedication	50		
	3.3	Sensitivity analysis for linear programming	53		
	3.4	Case study: constructing a dedicated portfolio	60		
4	LP m	odels: asset pricing and arbitrage	62		
	4.1	Derivative securities and the fundamental theorem of asset pricing	62		
	4.2	Arbitrage detection using linear programming	69		
	4.3	Additional exercises	71		
	4.4	Case study: tax clientele effects in bond portfolio management	76		
5	Nonli	inear programming: theory and algorithms	80		
	5.1	Introduction	80		
	5.2	Software	82		
	5.3	Univariate optimization	82		
	5.4	Unconstrained optimization	92		
	5.5	Constrained optimization	100		
	5.6	Nonsmooth optimization: subgradient methods	110		

vii	i	Contents	
6 NLP		models: volatility estimation	112
	6.1	Volatility estimation with GARCH models	112
	6.2	Estimating a volatility surface	116
7	Quad	lratic programming: theory and algorithms	121
	7.1	The quadratic programming problem	121
	7.2	Optimality conditions	122
	7.3	Interior-point methods	124
	7.4	QP software	135
	7.5	Additional exercises	136
8	QP n	nodels: portfolio optimization	138
	8.1	Mean-variance optimization	138
	8.2	Maximizing the Sharpe ratio	155
	8.3	Returns-based style analysis	158
	8.4	Recovering risk-neutral probabilities from	
		options prices	161
	8.5	Additional exercises	165
	8.6	Case study: constructing an efficient portfolio	167
9	Coni	c optimization tools	168
	9.1	Introduction	168
	9.2	Second-order cone programming	169
	9.3	Semidefinite programming	173
	9.4	Algorithms and software	177
10	Coni	c optimization models in finance	178
	10.1	Tracking error and volatility constraints	178
	10.2	Approximating covariance matrices	181
	10.3	Recovering risk-neutral probabilities from	
		options prices	185
	10.4	Arbitrage bounds for forward start options	187
11	Integ	er programming: theory and algorithms	192
	11.1	Introduction	192
	11.2	Modeling logical conditions	193
	11.3	Solving mixed integer linear programs	196
12	Integ	er programming models: constructing an index fund	212
	12.1	Combinatorial auctions	212
	12.2	The lockbox problem	213
	12.3	Constructing an index fund	216
	12.4	Portfolio optimization with minimum	
		transaction levels	222
	12.5	Additional exercises	223
	12.6	Case study: constructing an index fund	224

	Contents	i
13 Dyna	mic programming methods	22
13.1	Introduction	22
13.2	Abstraction of the dynamic programming approach	23
13.3	The knapsack problem	23
13.4	Stochastic dynamic programming	23
14 DP n	nodels: option pricing	24
14.1	A model for American options	24
14.2	Binomial lattice	24
15 DP n	nodels: structuring asset-backed securities	24
15.1	Data	25
15.2	Enumerating possible tranches	25
15.3	A dynamic programming approach	25
15.4	Case study: structuring CMOs	25
16 Stock	astic programming: theory and algorithms	25
16.1	Introduction	25
16.2	Two-stage problems with recourse	25
16.3	Multi-stage problems	25
16.4	Decomposition	26
16.5	Scenario generation	26
17 Stock	astic programming models: Value-at-Risk and	
Co	nditional Value-at-Risk	27
17.1	Risk measures	27
17.2	Minimizing CVaR	27
17.3	Example: bond portfolio optimization	27
18 Stock	nastic programming models: asset/liability management	27
18.1	Asset/liability management	27
18.2	Synthetic options	28
18.3	Case study: option pricing with transaction costs	28
19 Robu	st optimization: theory and tools	29
19.1	Introduction to robust optimization	29
19.2	Uncertainty sets	29
19.3	Different flavors of robustness	29
19.4	Tools and strategies for robust optimization	30
20 Robu	ist optimization models in finance	30
20.1	Robust multi-period portfolio selection	30
20.2	Robust profit opportunities in risky portfolios	31
20.3	Robust portfolio selection	31
20.4	Relative robustness in portfolio selection	31
20.5	Moment bounds for option prices	31
20.6	Additional exercises	31

х

Cambridge University Press 978-0-521-86170-0 - Optimization Methods in Finance Gerard Cornuejols and Reha Tutuncu Frontmatter More information

Contents

Appendix A	Convexity	320
Appendix B	Cones	322
Appendix C	A probability primer	323
Appendix D	The revised simplex method	327
Reference	338	
Index		342

Foreword

The use of sophisticated mathematical tools in modern finance is now commonplace. Researchers and practitioners routinely run simulations or solve differential equations to price securities, estimate risks, or determine hedging strategies. Some of the most important tools employed in these computations are optimization algorithms. Many computational finance problems ranging from asset allocation to risk management, from option pricing to model calibration, can be solved by optimization techniques. This book is devoted to explaining how to solve such problems efficiently and accurately using recent advances in optimization models, methods, and software.

Optimization is a mature branch of applied mathematics. Typical optimization problems have the objective of allocating limited resources to alternative activities in order to maximize the total benefit obtained from these activities. Through decades of intensive and innovative research, fast and reliable algorithms and software have become available for many classes of optimization problems. Consequently, optimization is now being used as an effective management and decision-support tool in many industries, including the financial industry.

This book discusses several classes of optimization problems encountered in financial models, including linear, quadratic, integer, dynamic, stochastic, conic, and robust programming. For each problem class, after introducing the relevant theory (optimality conditions, duality, etc.) and efficient solution methods, we discuss several problems of mathematical finance that can be modeled within this problem class. The reader is guided through the solution of asset/liability cash-flow matching using linear programming techniques, which are also used to explain asset pricing and arbitrage. Volatility estimation is discussed using nonlinear optimization models. Quadratic programming formulations are provided for portfolio optimization problems based on a mean-variance model for returns-based style analysis and for risk-neutral density estimation. Conic optimization techniques are introduced for modeling volatility constraints in asset management and for approximating

CAMBRIDGE

Cambridge University Press 978-0-521-86170-0 - Optimization Methods in Finance Gerard Cornuejols and Reha Tutuncu Frontmatter <u>More information</u>

Foreword

covariance matrices. For constructing an index fund, we use an integer programming model. Option pricing is presented in the context of dynamic programming and so is the problem of structuring asset-backed securities. Stochastic programming is applied to asset/liability management, and in this context the notion of Conditional Value at Risk is described. Robust optimization models for portfolio selection and option pricing are also discussed.

This book is intended as a textbook for Master's programs in financial engineering, finance, or computational finance. In addition, the structure of chapters, alternating between optimization methods and financial models that employ these methods, allows the use of this book as a primary or secondary text in upper level undergraduate or introductory graduate courses in operations research, management science, and applied mathematics.

Optimization algorithms are sophisticated tools and the relationship between their inputs and outputs is sometimes opaque. To maximize the value one gets from these tools and to understand how they work, users often need a significant amount of guidance and practical experience with them. This book aims to provide this guidance and serve as a reference tool for the finance practitioners who use or want to use optimization techniques.

This book has its origins in courses taught at Carnegie Mellon University in the Masters program in Computational Finance and in the MBA program at the Tepper School of Business (Gérard Cornuéjols), and at the Tokyo Institute of Technology, Japan, and the University of Coimbra, Portugal (Reha Tütüncü). We thank the attendants of these courses for their feedback and for many stimulating discussions. We would also like to thank the colleagues who provided the initial impetus for this project or collaborated with us on various research projects that are reflected in the book, especially Rick Green, Raphael Hauser, John Hooker, Mark Koenig, Masakazu Kojima, Vijay Krishnamurthy, Yanjun Li, Ana Margarida Monteiro, Mustafa Pinar, Sanjay Srivastava, Michael Trick, and Luís Vicente. Various drafts of this book were experimented with in class by Javier Peña, François Margot, Miguel Lejeune, Miroslav Karamanov, and Kathie Cameron, and we thank them for their comments. Initial drafts of this book were completed when the second author was on the faculty of the Department of Mathematical Sciences at Carnegie Mellon University; he gratefully acknowledges their financial support.

xii