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Introduction

Optimization is a branch of applied mathematics that derives its importance both
from the wide variety of its applications and from the availability of efficient algo-
rithms. Mathematically, it refers to the minimization (or maximization) of a given
objective function of several decision variables that satisfy functional constraints.
A typical optimization model addresses the allocation of scarce resources among
possible alternative uses in order to maximize an objective function such as total
profit.

Decision variables, the objective function, and constraints are three essential
elements of any optimization problem. Problems that lack constraints are called
unconstrained optimization problems, while others are often referred to as con-
strained optimization problems. Problems with no objective functions are called
feasibility problems. Some problems may have multiple objective functions. These
problems are often addressed by reducing them to a single-objective optimization
problem or a sequence of such problems.

If the decision variables in an optimization problem are restricted to integers, or
to a discrete set of possibilities, we have an integer or discrete optimization prob-
lem. If there are no such restrictions on the variables, the problem is a continuous
optimization problem. Of course, some problems may have a mixture of discrete
and continuous variables. We continue with a list of problem classes that we will
encounter in this book.

1.1 Optimization problems

We start with a generic description of an optimization problem. Given a function
f (x) : IRn → IR and a set S ⊂ IRn , the problem of finding an x∗ ∈ IRn that solves

minx f (x)
s.t. x ∈ S

(1.1)
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2 Introduction

is called an optimization problem. We refer to f as the objective function and to S
as the feasible region. If S is empty, the problem is called infeasible. If it is possible
to find a sequence xk ∈ S such that f (xk) → −∞ as k → +∞, then the problem
is unbounded. If the problem is neither infeasible nor unbounded, then it is often
possible to find a solution x∗ ∈ S that satisfies

f (x∗) ≤ f (x), ∀x ∈ S.

Such an x∗ is called a global minimizer of the problem (1.1). If

f (x∗) < f (x), ∀x ∈ S, x 	= x∗,

then x∗ is a strict global minimizer. In other instances, we may only find an x∗ ∈ S
that satisfies

f (x∗) ≤ f (x), ∀x ∈ S ∩ Bx∗(ε)

for some ε > 0, where Bx∗(ε) is the open ball with radius ε centered at x∗, i.e.,

Bx∗(ε) = {x : ‖x − x∗‖ < ε}.
Such an x∗ is called a local minimizer of the problem (1.1). A strict local minimizer
is defined similarly.

In most cases, the feasible set S is described explicitly using functional con-
straints (equalities and inequalities). For example, S may be given as

S := {x : gi (x) = 0, i ∈ E and gi (x) ≥ 0, i ∈ I},
where E and I are the index sets for equality and inequality constraints. Then, our
generic optimization problem takes the following form:

minx f (x)
gi (x) = 0, i ∈ E
gi (x) ≥ 0, i ∈ I.

(1.2)

Many factors affect whether optimization problems can be solved efficiently. For
example, the number n of decision variables, and the total number of constraints
|E | + |I|, are generally good predictors of how difficult it will be to solve a given
optimization problem. Other factors are related to the properties of the functions
f and gi that define the problem. Problems with a linear objective function and
linear constraints are easier, as are problems with convex objective functions and
convex feasible sets. For this reason, instead of general purpose optimization algo-
rithms, researchers have developed different algorithms for problems with special
characteristics. We list the main types of optimization problems we will encounter.
A more complete list can be found, for example, on the Optimization Tree available
from www-fp.mcs.anl.gov/otc/Guide/OptWeb/.
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1.1 Optimization problems 3

1.1.1 Linear and nonlinear programming

One of the most common and easiest optimization problems is linear optimization
or linear programming (LP). This is the problem of optimizing a linear objective
function subject to linear equality and inequality constraints. It corresponds to the
case where the functions f and gi in (1.2) are all linear. If either f or one of the
functions gi is not linear, then the resulting problem is a nonlinear programming
(NLP) problem.

The standard form of the LP is given below:

minx cTx
Ax = b

x ≥ 0,

(1.3)

where A ∈ IRm×n , b ∈ IRm , c ∈ IRn are given, and x ∈ IRn is the variable vector
to be determined. In this book, a k-vector is also viewed as a k × 1 matrix. For an
m × n matrix M , the notation MT denotes the transpose matrix, namely the n × m
matrix with entries MT

i j = M ji . As an example, in the above formulation cT is a
1 × n matrix and cTx is the 1 × 1 matrix with entry

∑n
j=1 c j x j . The objective in

(1.3) is to minimize the linear function
∑n

j=1 c j x j .
As with (1.1), the problem (1.3) is said to be feasible if its constraints are consis-

tent (i.e., they define a nonempty region) and it is called unbounded if there exists a
sequence of feasible vectors {xk} such that cTxk → −∞. When (1.3) is feasible but
not unbounded it has an optimal solution, i.e., a vector x that satisfies the constraints
and minimizes the objective value among all feasible vectors. Similar definitions
apply to nonlinear programming problems.

The best known and most successful methods for solving LPs are the simplex
and interior-point methods. NLPs can be solved using gradient search techniques as
well as approaches based on Newton’s method such as interior-point and sequential
quadratic programming methods.

1.1.2 Quadratic programming

A more general optimization problem is the quadratic optimization or the quadratic
programming (QP) problem, where the objective function is now a quadratic func-
tion of the variables. The standard form QP is defined as follows:

minx
1
2 xT Qx + cTx
Ax = b

x ≥ 0,

(1.4)

where A ∈ IRm×n , b ∈ IRm , c ∈ IRn , Q ∈ IRn×n are given, and x ∈ IRn . Since
xT Qx = 1

2 xT(Q + QT)x , one can assume without loss of generality that Q is sym-
metric, i.e., Qi j = Q ji .
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4 Introduction

The objective function of the problem (1.4) is a convex function of x when Q
is a positive semidefinite matrix, i.e., when yT Qy ≥ 0 for all y (see Appendix A
for a discussion on convex functions). This condition is equivalent to Q having
only nonnegative eigenvalues. When this condition is satisfied, the QP problem
is a convex optimization problem and can be solved in polynomial time using
interior-point methods. Here we are referring to a classical notion used to measure
computational complexity. Polynomial time algorithms are efficient in the sense
that they always find an optimal solution in an amount of time that is guaranteed to
be at most a polynomial function of the input size.

1.1.3 Conic optimization

Another generalization of (1.3) is obtained when the nonnegativity constraints
x ≥ 0 are replaced by general conic inclusion constraints. This is called a conic
optimization (CO) problem. For this purpose, we consider a closed convex cone
C (see Appendix B for a brief discussion on cones) in a finite-dimensional vector
space X and the following conic optimization problem:

minx cTx
Ax = b

x ∈ C.

(1.5)

When X = IRn and C = IRn
+, this problem is the standard form LP. However,

much more general nonlinear optimization problems can also be formulated in
this way. Furthermore, some of the most efficient and robust algorithmic machin-
ery developed for linear optimization problems can be modified to solve these
general optimization problems. Two important subclasses of conic optimization
problems we will address are: (i) second-order cone optimization, and (ii) semidef-
inite optimization. These correspond to the cases when C is the second-order
cone:

Cq := {
x = (x1, x2, . . . , xn) ∈ IRn : x2

1 ≥ x2
2 + · · · + x2

n , x1 ≥ 0
}
,

and the cone of symmetric positive semidefinite matrices:

Cs :=

⎧⎪⎨
⎪⎩

X =

⎡
⎢⎣

x11 · · · x1n
...

. . .
...

xn1 · · · xnn

⎤
⎥⎦∈ IRn×n : X = XT, X is positive semidefinite

⎫⎪⎬
⎪⎭

.

When we work with the cone of positive semidefinite matrices, the standard inner
products used in cTx and Ax in (1.5) are replaced by an appropriate inner product
for the space of n-dimensional square matrices.
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1.2 Optimization with data uncertainty 5

1.1.4 Integer programming

Integer programs are optimization problems that require some or all of the variables
to take integer values. This restriction on the variables often makes the problems
very hard to solve. Therefore we will focus on integer linear programs, which have
a linear objective function and linear constraints. A pure integer linear program
(ILP) is given by:

minx cTx
Ax ≥ b

x ≥ 0 and integral,
(1.6)

where A ∈ IRm×n , b ∈ IRm , c ∈ IRn are given, and x ∈ IN n is the variable vector
to be determined.

An important case occurs when the variables x j represent binary decision vari-
ables, that is, x ∈ {0, 1}n . The problem is then called a 0–1 linear program.

When there are both continuous variables and integer constrained variables, the
problem is called a mixed integer linear program (MILP):

minx cTx
Ax ≥ b

x ≥ 0
x j ∈ IN for j = 1, . . . , p.

(1.7)

where A, b, c are given data and the integer p (with 1 ≤ p < n) is also part of the
input.

1.1.5 Dynamic programming

Dynamic programming refers to a computational method involving recurrence re-
lations. This technique was developed by Richard Bellman in the early 1950s. It
arose from studying programming problems in which changes over time were im-
portant, thus the name “dynamic programming.” However, the technique can also
be applied when time is not a relevant factor in the problem. The idea is to divide
the problem into “stages” in order to perform the optimization recursively. It is
possible to incorporate stochastic elements into the recursion.

1.2 Optimization with data uncertainty

In all the problem classes discussed so far (except dynamic programming), we
made the implicit assumption that the data of the problem, namely the parameters
such as Q, A, b and c in QP, are all known. This is not always the case. Often,
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6 Introduction

the problem parameters correspond to quantities that will only be realized in the
future, or cannot be known exactly at the time the problem must be formulated and
solved. Such situations are especially common in models involving financial quan-
tities, such as returns on investments, risks, etc. We will discuss two fundamentally
different approaches that address optimization with data uncertainty. Stochastic
programming is an approach used when the data uncertainty is random and can be
explained by some probability distribution. Robust optimization is used when one
wants a solution that behaves well in all possible realizations of the uncertain data.
These two alternative approaches are not problem classes (as in LP, QP, etc.) but
rather modeling techniques for addressing data uncertainty.

1.2.1 Stochastic programming

The term stochastic programming refers to an optimization problem in which some
problem data are random. The underlying optimization problem might be a linear
program, an integer program, or a nonlinear program. An important case is that of
stochastic linear programs.

A stochastic program with recourse arises when some of the decisions (recourse
actions) can be taken after the outcomes of some (or all) random events have become
known. For example, a two-stage stochastic linear program with recourse can be
written as follows:

maxx aTx + E[maxy(ω) c(ω)T y(ω)]
Ax = b

B(ω)x + C(ω)y(ω) = d(ω)
x ≥ 0, y(ω) ≥ 0,

(1.8)

where the first-stage decisions are represented by vector x and the second-stage
decisions by vector y(ω), which depend on the realization of a random event ω. A
and b define deterministic constraints on the first-stage decisions x , whereas B(ω),
C(ω), and d(ω) define stochastic linear constraints linking the recourse decisions
y(ω) to the first-stage decisions. The objective function contains a deterministic
term aTx and the expectation of the second-stage objective c(ω)T y(ω) taken over
all realizations of the random event ω.

Note that, once the first-stage decisions x have been made and the random event
ω has been realized, one can compute the optimal second-stage decisions by solving
the following linear program:

f (x, ω) = max c(ω)T y(ω)
C(ω)y(ω) = d(ω) − B(ω)x
y(ω) ≥ 0.

(1.9)
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1.2 Optimization with data uncertainty 7

Let f (x) = E[ f (x, ω)] denote the expected value of the optimal value of this
problem. Then, the two-stage stochastic linear program becomes

max aTx + f (x)
Ax = b

x ≥ 0.

(1.10)

Thus, if the (possibly nonlinear) function f (x) is known, the problem reduces to
a nonlinear programming problem. When the data c(ω), B(ω), C(ω), and d(ω)
are described by finite distributions, one can show that f is piecewise linear and
concave. When the data are described by probability densities that are absolutely
continuous and have finite second moments, one can show that f is differentiable
and concave. In both cases, we have a convex optimization problem with linear
constraints for which specialized algorithms are available.

1.2.2 Robust optimization

Robust optimization refers to the modeling of optimization problems with data
uncertainty to obtain a solution that is guaranteed to be “good” for all possible
realizations of the uncertain parameters. In this sense, this approach departs from
the randomness assumption used in stochastic optimization for uncertain parame-
ters and gives the same importance to all possible realizations. Uncertainty in the
parameters is described through uncertainty sets that contain all (or most) possible
values that can be realized by the uncertain parameters.

There are different definitions and interpretations of robustness and the resulting
models differ accordingly. One important concept is constraint robustness, often
called model robustness in the literature. This refers to solutions that remain feasible
for all possible values of the uncertain inputs. This type of solution is required in
several engineering applications. Here is an example adapted from Ben-Tal and
Nemirovski [8]. Consider a multi-phase engineering process (a chemical distillation
process, for example) and a related process optimization problem that includes
balance constraints (materials entering a phase of the process cannot exceed what
is used in that phase plus what is left over for the next phase). The quantities
of the end products of a particular phase may depend on external, uncontrollable
factors and are therefore uncertain. However, no matter what the values of these
uncontrollable factors are, the balance constraints must be satisfied. Therefore, the
solution must be constraint robust with respect to the uncertainties of the problem.
A mathematical model for finding constraint-robust solutions will be described.
First, consider an optimization problem of the form:

minx f (x)
G(x, p) ∈ K .

(1.11)
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8 Introduction

Here, x are the decision variables, f is the (certain) objective function, G and K
are the structural elements of the constraints that are assumed to be certain and
p are the uncertain parameters of the problem. Consider an uncertainty set U that
contains all possible values of the uncertain parameters p. Then, a constraint-robust
optimal solution can be found by solving the following problem:

minx f (x)
G(x, p) ∈ K , ∀p ∈ U .

(1.12)

A related concept is objective robustness, which occurs when uncertain parame-
ters appear in the objective function. This is often referred to as solution robustness
in the literature. Such robust solutions must remain close to optimal for all possible
realizations of the uncertain parameters. Next, consider an optimization problem
of the form:

minx f (x, p)
x ∈ S.

(1.13)

Here, S is the (certain) feasible set and f is the objective function that depends on
uncertain parameters p. Assume as above that U is the uncertainty set that contains
all possible values of the uncertain parameters p. Then, an objective-robust solution
is obtained by solving:

minx∈S maxp∈U f (x, p). (1.14)

Note that objective robustness is a special case of constraint robustness. Indeed,
by introducing a new variable t (to be minimized) into (1.13) and imposing the
constraint f (x, p) ≤ t , we get an equivalent problem to (1.13). The constraint-
robust formulation of the resulting problem is equivalent to (1.14).

Constraint robustness and objective robustness are concepts that arise in conser-
vative decision making and are not always appropriate for optimization problems
with data uncertainty.

1.3 Financial mathematics

Modern finance has become increasingly technical, requiring the use of sophisti-
cated mathematical tools in both research and practice. Many find the roots of this
trend in the portfolio selection models and methods described by Markowitz [54]
in the 1950s and the option pricing formulas developed by Black, Scholes, and
Merton [15, 55] in the late 1960s and early 1970s. For the enormous effect these
works produced on modern financial practice, Markowitz was awarded the Nobel
prize in Economics in 1990, while Scholes and Merton won the Nobel prize in
Economics in 1997.
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1.3 Financial mathematics 9

Below, we introduce topics in finance that are especially suited for mathematical
analysis and involve sophisticated tools from mathematical sciences.

1.3.1 Portfolio selection and asset allocation

The theory of optimal selection of portfolios was developed by Harry Markowitz in
the 1950s. His work formalized the diversification principle in portfolio selection
and, as mentioned above, earned him the 1990 Nobel prize for Economics. Here
we give a brief description of the model and relate it to QPs.

Consider an investor who has a certain amount of money to be invested in a
number of different securities (stocks, bonds, etc.) with random returns. For each
security i = 1, . . . , n, estimates of its expected return µi and variance σ 2

i are given.
Furthermore, for any two securities i and j , their correlation coefficient ρi j is also
assumed to be known. If we represent the proportion of the total funds invested
in security i by xi , one can compute the expected return and the variance of the
resulting portfolio x = (x1, . . . , xn) as follows:

E[x] = x1µ1 + · · · + xnµn = µTx,

and

Var[x] =
∑
i, j

ρi jσiσ j xi x j = xT Qx,

where ρi i ≡ 1, Qi j = ρi jσiσ j , and µ = (µ1, . . . , µn).
The portfolio vector x must satisfy

∑
i xi = 1 and there may or may not be

additional feasibility constraints. A feasible portfolio x is called efficient if it has
the maximal expected return among all portfolios with the same variance, or, al-
ternatively, if it has the minimum variance among all portfolios that have at least
a certain expected return. The collection of efficient portfolios form the efficient
frontier of the portfolio universe.

Markowitz’ portfolio optimization problem, also called the mean-variance op-
timization (MVO) problem, can be formulated in three different but equivalent
ways. One formulation results in the problem of finding a minimum variance port-
folio of the securities 1 to n that yields at least a target value R of expected re-
turn. Mathematically, this formulation produces a convex quadratic programming
problem:

minx xT Qx
eTx = 1
µTx ≥ R

x ≥ 0,

(1.15)
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10 Introduction

where e is an n-dimensional vector with all components equal to 1. The first con-
straint indicates that the proportions xi should sum to 1. The second constraint in-
dicates that the expected return is no less than the target value and, as we discussed
above, the objective function corresponds to the total variance of the portfolio. Non-
negativity constraints on xi are introduced to rule out short sales (selling a security
that you do not have). Note that the matrix Q is positive semidefinite since xT Qx ,
the variance of the portfolio, must be nonnegative for every portfolio (feasible or
not) x .

As an alternative to problem (1.15), we may choose to maximize the expected
return of a portfolio while limiting the variance of its return. Or, we can maximize
a risk-adjusted expected return, which is defined as the expected return minus
a multiple of the variance. These two formulations are essentially equivalent to
(1.15), as we will see in Chapter 8.

The model (1.15) is rather versatile. For example, if short sales are permitted on
some or all of the securities, then this can be incorporated into the model simply
by removing the nonnegativity constraint on the corresponding variables. If reg-
ulations or investor preferences limit the amount of investment in a subset of the
securities, the model can be augmented with a linear constraint to reflect such a
limit. In principle, any linear constraint can be added to the model without making
it significantly harder to solve.

Asset allocation problems have the same mathematical structure as portfolio
selection problems. In these problems the objective is not to choose a portfolio
of stocks (or other securities) but to determine the optimal investment among a
set of asset classes. Examples of asset classes are large capitalization stocks, small
capitalization stocks, foreign stocks, government bonds, corporate bonds, etc. There
are many mutual funds focusing on specific asset classes and one can therefore
conveniently invest in these asset classes by purchasing the relevant mutual funds.
After estimating the expected returns, variances, and covariances for different asset
classes, one can formulate a QP identical to (1.15) and obtain efficient portfolios
of these asset classes.

A different strategy for portfolio selection is to try to mirror the movements
of a broad market population using a significantly smaller number of securities.
Such a portfolio is called an index fund. No effort is made to identify mispriced
securities. The assumption is that the market is efficient and therefore no superior
risk-adjusted returns can be achieved by stock picking strategies since the stock
prices reflect all the information available in the marketplace. Whereas actively
managed funds incur transaction costs that reduce their overall performance, index
funds are not actively traded and incur low management fees. They are typical of a
passive management strategy. How do investment companies construct index funds?
There are numerous ways of doing this. One way is to solve a clustering problem
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