1

Preliminary algebra

This opening chapter reviews the basic algebra of which a working knowledge is presumed in the rest of the book. Many students will be familiar with much, if not all, of it, but recent changes in what is studied during secondary education mean that it cannot be taken for granted that they will already have a mastery of all the topics presented here. The reader may assess which areas need further study or revision by attempting the exercises at the end of the chapter. The main areas covered are polynomial equations and the related topic of partial fractions, curve sketching, coordinate geometry, trigonometric identities and the notions of proof by induction or contradiction.

1.1 Simple functions and equations

It is normal practice when starting the mathematical investigation of a physical problem to assign an algebraic symbol to the quantity whose value is sought, either numerically or as an explicit algebraic expression. For the sake of definiteness, in this chapter we will use x to denote this quantity most of the time. Subsequent steps in the analysis involve applying a combination of known laws, consistency conditions and (possibly) given constraints to derive one or more equations satisfied by x. These equations may take many forms, ranging from a simple polynomial equation to, say, a partial differential equation with several boundary conditions. Some of the more complicated possibilities are treated in the later chapters of this book, but for the present we will be concerned with techniques for the solution of relatively straightforward algebraic equations.

1.1.1 Polynomials and polynomial equations

Firstly we consider the simplest type of equation, a *polynomial equation*, in which a *polynomial* expression in x, denoted by f(x), is set equal to zero and thereby

forms an equation which is satisfied by particular values of x, called the *roots* of the equation:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0.$$
(1.1)

Here *n* is an integer > 0, called the *degree* of both the polynomial and the equation, and the known coefficients a_0, a_1, \ldots, a_n are real quantities with $a_n \neq 0$.

Equations such as (1.1) arise frequently in physical problems, the coefficients a_i being determined by the physical properties of the system under study. What is needed is to find some or all of the roots of (1.1), i.e. the x-values, α_k , that satisfy $f(\alpha_k) = 0$; here k is an index that, as we shall see later, can take up to n different values, i.e. k = 1, 2, ..., n. The roots of the polynomial equation can equally well be described as the zeros of the polynomial. When they are *real*, they correspond to the points at which a graph of f(x) crosses the x-axis. Roots that are complex (see chapter 3) do not have such a graphical interpretation.

For polynomial equations containing powers of x greater than x^4 general methods do not exist for obtaining explicit expressions for the roots α_k . Even for n = 3 and n = 4 the prescriptions for obtaining the roots are sufficiently complicated that it is usually preferable to obtain exact or approximate values by other methods. Only for n = 1 and n = 2 can closed-form solutions be given. These results will be well known to the reader, but they are given here for the sake of completeness. For n = 1, (1.1) reduces to the *linear* equation

$$a_1 x + a_0 = 0; (1.2)$$

the solution (root) is $\alpha_1 = -a_0/a_1$. For n = 2, (1.1) reduces to the quadratic equation

$$a_2 x^2 + a_1 x + a_0 = 0; (1.3)$$

the two roots α_1 and α_2 are given by

$$\alpha_{1,2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2 a_0}}{2a_2}.$$
(1.4)

When discussing specifically quadratic equations, as opposed to more general polynomial equations, it is usual to write the equation in one of the two notations

$$ax^{2} + bx + c = 0,$$
 $ax^{2} + 2bx + c = 0,$ (1.5)

with respective explicit pairs of solutions

$$\alpha_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \qquad \qquad \alpha_{1,2} = \frac{-b \pm \sqrt{b^2 - ac}}{a}. \tag{1.6}$$

Of course, these two notations are entirely equivalent and the only important point is to associate each form of answer with the corresponding form of equation; most people keep to one form, to avoid any possible confusion.

1.1 SIMPLE FUNCTIONS AND EQUATIONS

If the value of the quantity appearing under the square root sign is positive then both roots are real; if it is negative then the roots form a complex conjugate pair, i.e. they are of the form $p \pm iq$ with p and q real (see chapter 3); if it has zero value then the two roots are equal and special considerations usually arise.

Thus linear and quadratic equations can be dealt with in a cut-and-dried way. We now turn to methods for obtaining partial information about the roots of higher-degree polynomial equations. In some circumstances the knowledge that an equation has a root lying in a certain range, or that it has no real roots at all, is all that is actually required. For example, in the design of electronic circuits it is necessary to know whether the current in a proposed circuit will break into spontaneous oscillation. To test this, it is sufficient to establish whether a certain polynomial equation, whose coefficients are determined by the physical parameters of the circuit, has a root with a positive real part (see chapter 3); complete determination of all the roots is not needed for this purpose. If the complete set of roots of a polynomial equation is required, it can usually be obtained to any desired accuracy by numerical methods such as those described in chapter 27.

There is no explicit step-by-step approach to finding the roots of a general polynomial equation such as (1.1). In most cases analytic methods yield only information *about* the roots, rather than their exact values. To explain the relevant techniques we will consider a particular example, 'thinking aloud' on paper and expanding on special points about methods and lines of reasoning. In more routine situations such comment would be absent and the whole process briefer and more tightly focussed.

Example: the cubic case

Let us investigate the roots of the equation

$$g(x) = 4x^3 + 3x^2 - 6x - 1 = 0$$
(1.7)

or, in an alternative phrasing, investigate the zeros of g(x). We note first of all that this is a *cubic* equation. It can be seen that for x large and positive g(x) will be large and positive and, equally, that for x large and negative g(x) will be large and negative. Therefore, intuitively (or, more formally, by continuity) g(x) must cross the x-axis at least once and so g(x) = 0 must have at least one real root. Furthermore, it can be shown that if f(x) is an *n*th-degree polynomial then the graph of f(x) must cross the x-axis an even or odd number of times as x varies between $-\infty$ and $+\infty$, according to whether *n* itself is even or odd. Thus a polynomial of odd degree always has at least one real root, but one of even degree may have no real root. A small complication, discussed later in this section, occurs when repeated roots arise.

Having established that g(x) = 0 has at least one real root, we may ask how

many real roots it *could* have. To answer this we need one of the fundamental theorems of algebra, mentioned above:

An *n*th-degree polynomial equation has exactly *n* roots.

It should be noted that this does not imply that there are *n* real roots (only that there are not more than *n*); some of the roots may be of the form p + iq.

To make the above theorem plausible and to see what is meant by repeated roots, let us suppose that the *n*th-degree polynomial equation f(x) = 0, (1.1), has r roots $\alpha_1, \alpha_2, \ldots, \alpha_r$, considered distinct for the moment. That is, we suppose that $f(\alpha_k) = 0$ for $k = 1, 2, \ldots, r$, so that f(x) vanishes only when x is equal to one of the r values α_k . But the same can be said for the function

$$F(x) = A(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_r), \qquad (1.8)$$

in which A is a non-zero constant; F(x) can clearly be multiplied out to form a polynomial expression.

We now call upon a second fundamental result in algebra: that if two polynomial functions f(x) and F(x) have equal values for all values of x, then their coefficients are equal on a term-by-term basis. In other words, we can equate the coefficients of each and every power of x in the two expressions (1.8) and (1.1); in particular we can equate the coefficients of the highest power of x. From this we have $Ax^r \equiv a_nx^n$ and thus that r = n and $A = a_n$. As r is both equal to n and to the number of roots of f(x) = 0, we conclude that the *n*th-degree polynomial f(x) = 0 has n roots. (Although this line of reasoning may make the theorem plausible, it does not constitute a proof since we have not shown that it is permissible to write f(x) in the form of equation (1.8).)

We next note that the condition $f(\alpha_k) = 0$ for k = 1, 2, ..., r, could also be met if (1.8) were replaced by

$$F(x) = A(x - \alpha_1)^{m_1} (x - \alpha_2)^{m_2} \cdots (x - \alpha_r)^{m_r},$$
(1.9)

with $A = a_n$. In (1.9) the m_k are integers ≥ 1 and are known as the multiplicities of the roots, m_k being the multiplicity of α_k . Expanding the right-hand side (RHS) leads to a polynomial of degree $m_1 + m_2 + \cdots + m_r$. This sum must be equal to n. Thus, if any of the m_k is greater than unity then the number of *distinct* roots, r, is less than n; the total number of roots remains at n, but one or more of the α_k counts more than once. For example, the equation

$$F(x) = A(x - \alpha_1)^2 (x - \alpha_2)^3 (x - \alpha_3)(x - \alpha_4) = 0$$

has exactly seven roots, α_1 being a double root and α_2 a triple root, whilst α_3 and α_4 are unrepeated (*simple*) roots.

We can now say that our particular equation (1.7) has either one or three real roots but in the latter case it may be that not all the roots are distinct. To decide how many real roots the equation has, we need to anticipate two ideas from the

1.1 SIMPLE FUNCTIONS AND EQUATIONS

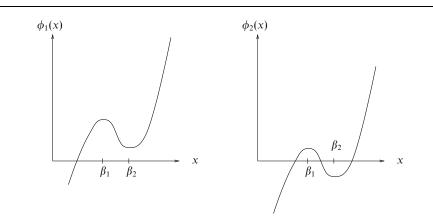


Figure 1.1 Two curves $\phi_1(x)$ and $\phi_2(x)$, both with zero derivatives at the same values of x, but with different numbers of real solutions to $\phi_i(x) = 0$.

next chapter. The first of these is the notion of the derivative of a function, and the second is a result known as Rolle's theorem.

The derivative f'(x) of a function f(x) measures the slope of the tangent to the graph of f(x) at that value of x (see figure 2.1 in the next chapter). For the moment, the reader with no prior knowledge of calculus is asked to accept that the derivative of ax^n is nax^{n-1} , so that the derivative g'(x) of the curve $g(x) = 4x^3 + 3x^2 - 6x - 1$ is given by $g'(x) = 12x^2 + 6x - 6$. Similar expressions for the derivatives of other polynomials are used later in this chapter.

Rolle's theorem states that if f(x) has equal values at two different values of x then at some point between these two x-values its derivative is equal to zero; i.e. the tangent to its graph is parallel to the x-axis at that point (see figure 2.2).

Having briefly mentioned the derivative of a function and Rolle's theorem, we now use them to establish whether g(x) has one or three real zeros. If g(x) = 0does have three real roots α_k , i.e. $g(\alpha_k) = 0$ for k = 1, 2, 3, then it follows from Rolle's theorem that between any consecutive pair of them (say α_1 and α_2) there must be some real value of x at which g'(x) = 0. Similarly, there must be a further zero of g'(x) lying between α_2 and α_3 . Thus a *necessary* condition for three real roots of g(x) = 0 is that g'(x) = 0 itself has two real roots.

However, this condition on the number of roots of g'(x) = 0, whilst necessary, is not *sufficient* to guarantee three real roots of g(x) = 0. This can be seen by inspecting the cubic curves in figure 1.1. For each of the two functions $\phi_1(x)$ and $\phi_2(x)$, the derivative is equal to zero at both $x = \beta_1$ and $x = \beta_2$. Clearly, though, $\phi_2(x) = 0$ has three real roots whilst $\phi_1(x) = 0$ has only one. It is easy to see that the crucial difference is that $\phi_1(\beta_1)$ and $\phi_1(\beta_2)$ have the same sign, whilst $\phi_2(\beta_1)$ and $\phi_2(\beta_2)$ have opposite signs.

It will be apparent that for some equations, $\phi(x) = 0$ say, $\phi'(x)$ equals zero

at a value of x for which $\phi(x)$ is also zero. Then the graph of $\phi(x)$ just touches the x-axis. When this happens the value of x so found is, in fact, a double real root of the polynomial equation (corresponding to one of the m_k in (1.9) having the value 2) and must be counted twice when determining the number of real roots.

Finally, then, we are in a position to decide the number of real roots of the equation

$$g(x) = 4x^3 + 3x^2 - 6x - 1 = 0.$$

The equation g'(x) = 0, with $g'(x) = 12x^2 + 6x - 6$, is a quadratic equation with explicit solutions[§]

$$\beta_{1,2} = \frac{-3 \pm \sqrt{9 + 72}}{12},$$

so that $\beta_1 = -1$ and $\beta_2 = \frac{1}{2}$. The corresponding values of g(x) are $g(\beta_1) = 4$ and $g(\beta_2) = -\frac{11}{4}$, which are of opposite sign. This indicates that $4x^3 + 3x^2 - 6x - 1 = 0$ has three real roots, one lying in the range $-1 < x < \frac{1}{2}$ and the others one on each side of that range.

The techniques we have developed above have been used to tackle a cubic equation, but they can be applied to polynomial equations f(x) = 0 of degree greater than 3. However, much of the analysis centres around the equation f'(x) = 0 and this itself, being then a polynomial equation of degree 3 or more, either has no closed-form general solution or one that is complicated to evaluate. Thus the amount of information that can be obtained about the roots of f(x) = 0 is correspondingly reduced.

A more general case

To illustrate what can (and cannot) be done in the more general case we now investigate as far as possible the real roots of

$$f(x) = x^7 + 5x^6 + x^4 - x^3 + x^2 - 2 = 0.$$

The following points can be made.

- (i) This is a seventh-degree polynomial equation; therefore the number of real roots is 1, 3, 5 or 7.
- (ii) f(0) is negative whilst $f(\infty) = +\infty$, so there must be at least one positive root.
- [§] The two roots β_1 , β_2 are written as $\beta_{1,2}$. By convention β_1 refers to the upper symbol in \pm , β_2 to the lower symbol.

1.1 SIMPLE FUNCTIONS AND EQUATIONS

(iii) The equation f'(x) = 0 can be written as $x(7x^5 + 30x^4 + 4x^2 - 3x + 2) = 0$ and thus x = 0 is a root. The derivative of f'(x), denoted by f''(x), equals $42x^5 + 150x^4 + 12x^2 - 6x + 2$. That f'(x) is zero whilst f''(x) is positive at x = 0 indicates (subsection 2.1.8) that f(x) has a minimum there. This, together with the facts that f(0) is negative and $f(\infty) = \infty$, implies that the total number of real roots to the right of x = 0 must be odd. Since the total number of real roots must be odd, the number to the left must be even (0, 2, 4 or 6).

This is about all that can be deduced by *simple* analytic methods in this case, although some further progress can be made in the ways indicated in exercise 1.3.

There are, in fact, more sophisticated tests that examine the relative signs of successive terms in an equation such as (1.1), and in quantities derived from them, to place limits on the numbers and positions of roots. But they are not prerequisites for the remainder of this book and will not be pursued further here.

We conclude this section with a worked example which demonstrates that the practical application of the ideas developed so far can be both short and decisive.

For what values of k, if any, does $f(x) = x^3 - 3x^2 + 6x + k = 0$

have three real roots?

Firstly we study the equation f'(x) = 0, i.e. $3x^2 - 6x + 6 = 0$. This is a quadratic equation but, using (1.6), because $6^2 < 4 \times 3 \times 6$, it can have no real roots. Therefore, it follows immediately that f(x) has no maximum or minimum; consequently f(x) = 0 cannot have more than one real root, whatever the value of k.

1.1.2 Factorising polynomials

In the previous subsection we saw how a polynomial with *r* given distinct zeros α_k could be constructed as the product of factors containing those zeros:

$$f(x) = a_n (x - \alpha_1)^{m_1} (x - \alpha_2)^{m_2} \cdots (x - \alpha_r)^{m_r}$$

= $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$ (1.10)

with $m_1 + m_2 + \cdots + m_r = n$, the degree of the polynomial. It will cause no loss of generality in what follows to suppose that all the zeros are simple, i.e. all $m_k = 1$ and r = n, and this we will do.

Sometimes it is desirable to be able to reverse this process, in particular when one exact zero has been found by some method and the remaining zeros are to be investigated. Suppose that we have located one zero, α ; it is then possible to write (1.10) as

$$f(x) = (x - \alpha)f_1(x),$$
 (1.11)

PRELIMINARY ALGEBRA

where $f_1(x)$ is a polynomial of degree n-1. How can we find $f_1(x)$? The procedure is much more complicated to describe in a general form than to carry out for an equation with given numerical coefficients a_i . If such manipulations are too complicated to be carried out mentally, they could be laid out along the lines of an algebraic 'long division' sum. However, a more compact form of calculation is as follows. Write $f_1(x)$ as

$$f_1(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + b_{n-3}x^{n-3} + \dots + b_1x + b_0.$$

Substitution of this form into (1.11) and subsequent comparison of the coefficients of x^p for p = n, n - 1, ..., 1, 0 with those in the second line of (1.10) generates the series of equations

$$b_{n-1} = a_n,$$

 $b_{n-2} - \alpha b_{n-1} = a_{n-1},$
 $b_{n-3} - \alpha b_{n-2} = a_{n-2},$
 \vdots
 $b_0 - \alpha b_1 = a_1,$
 $-\alpha b_0 = a_0.$

These can be solved successively for the b_j , starting either from the top or from the bottom of the series. In either case the final equation used serves as a check; if it is not satisfied, at least one mistake has been made in the computation – or α is not a zero of f(x) = 0. We now illustrate this procedure with a worked example.

Determine by inspection the simple roots of the equation

$$f(x) = 3x^4 - x^3 - 10x^2 - 2x + 4 = 0$$
and hence, by factorisation, find the rest of its roots.

From the pattern of coefficients it can be seen that x = -1 is a solution to the equation. We therefore write

$$f(x) = (x+1)(b_3x^3 + b_2x^2 + b_1x + b_0),$$

where

 $b_3 = 3,$ $b_2 + b_3 = -1,$ $b_1 + b_2 = -10,$ $b_0 + b_1 = -2,$ $b_0 = 4.$

These equations give $b_3 = 3, b_2 = -4, b_1 = -6, b_0 = 4$ (check) and so

$$f(x) = (x+1)f_1(x) = (x+1)(3x^3 - 4x^2 - 6x + 4).$$

1.1 SIMPLE FUNCTIONS AND EQUATIONS

We now note that $f_1(x) = 0$ if x is set equal to 2. Thus x - 2 is a factor of $f_1(x)$, which therefore can be written as

$$f_1(x) = (x-2)f_2(x) = (x-2)(c_2x^2 + c_1x + c_0)$$

with

 $c_2 = 3,$ $c_1 - 2c_2 = -4,$ $c_0 - 2c_1 = -6,$ $-2c_0 = 4.$

These equations determine $f_2(x)$ as $3x^2 + 2x - 2$. Since $f_2(x) = 0$ is a quadratic equation, its solutions can be written explicitly as

$$x = \frac{-1 \pm \sqrt{1+6}}{3}.$$

Thus the four roots of f(x) = 0 are $-1, 2, \frac{1}{3}(-1 + \sqrt{7})$ and $\frac{1}{3}(-1 - \sqrt{7})$.

1.1.3 Properties of roots

From the fact that a polynomial equation can be written in any of the alternative forms

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0,$$

$$f(x) = a_n (x - \alpha_1)^{m_1} (x - \alpha_2)^{m_2} \cdots (x - \alpha_r)^{m_r} = 0,$$

$$f(x) = a_n (x - \alpha_1) (x - \alpha_2) \cdots (x - \alpha_n) = 0,$$

it follows that it must be possible to express the coefficients a_i in terms of the roots α_k . To take the most obvious example, comparison of the constant terms (formally the coefficient of x^0) in the first and third expressions shows that

$$a_n(-\alpha_1)(-\alpha_2)\cdots(-\alpha_n)=a_0,$$

or, using the product notation,

$$\prod_{k=1}^{n} \alpha_k = (-1)^n \frac{a_0}{a_n}.$$
(1.12)

Only slightly less obvious is a result obtained by comparing the coefficients of x^{n-1} in the same two expressions of the polynomial:

$$\sum_{k=1}^{n} \alpha_k = -\frac{a_{n-1}}{a_n}.$$
(1.13)

Comparing the coefficients of other powers of x yields further results, though they are of less general use than the two just given. One such, which the reader may wish to derive, is

$$\sum_{j=1}^{n} \sum_{k>j}^{n} \alpha_{j} \alpha_{k} = \frac{a_{n-2}}{a_{n}}.$$
(1.14)

In the case of a quadratic equation these root properties are used sufficiently often that they are worth stating explicitly, as follows. If the roots of the quadratic equation $ax^2 + bx + c = 0$ are α_1 and α_2 then

$$\alpha_1 + \alpha_2 = -\frac{b}{a},$$
$$\alpha_1 \alpha_2 = \frac{c}{a}.$$

If the alternative standard form for the quadratic is used, b is replaced by 2b in both the equation and the first of these results.

Find a cubic equation whose roots are -4, 3 and 5.

From results (1.12) - (1.14) we can compute that, arbitrarily setting $a_3 = 1$,

$$-a_2 = \sum_{k=1}^{3} \alpha_k = 4, \qquad a_1 = \sum_{j=1}^{3} \sum_{k>j}^{3} \alpha_j \alpha_k = -17, \qquad a_0 = (-1)^3 \prod_{k=1}^{3} \alpha_k = 60.$$

Thus a possible cubic equation is $x^3 + (-4)x^2 + (-17)x + (60) = 0$. Of course, any multiple of $x^3 - 4x^2 - 17x + 60 = 0$ will do just as well.

1.2 Trigonometric identities

So many of the applications of mathematics to physics and engineering are concerned with periodic, and in particular sinusoidal, behaviour that a sure and ready handling of the corresponding mathematical functions is an essential skill. Even situations with no obvious periodicity are often expressed in terms of periodic functions for the purposes of analysis. Later in this book whole chapters are devoted to developing the techniques involved, but as a necessary prerequisite we here establish (or remind the reader of) some standard identities with which he or she should be fully familiar, so that the manipulation of expressions containing sinusoids becomes automatic and reliable. So as to emphasise the angular nature of the argument of a sinusoid we will denote it in this section by θ rather than x.

1.2.1 Single-angle identities

We give without proof the basic identity satisfied by the sinusoidal functions $\sin \theta$ and $\cos \theta$, namely

$$\cos^2\theta + \sin^2\theta = 1. \tag{1.15}$$

If $\sin \theta$ and $\cos \theta$ have been defined geometrically in terms of the coordinates of a point on a circle, a reference to the name of Pythagoras will suffice to establish this result. If they have been defined by means of series (with θ expressed in radians) then the reader should refer to Euler's equation (3.23) on page 93, and note that $e^{i\theta}$ has unit modulus if θ is real.