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Preliminary algebra

This opening chapter reviews the basic algebra of which a working knowledge is

presumed in the rest of the book. Many students will be familiar with much, if

not all, of it, but recent changes in what is studied during secondary education

mean that it cannot be taken for granted that they will already have a mastery

of all the topics presented here. The reader may assess which areas need further

study or revision by attempting the exercises at the end of the chapter. The main

areas covered are polynomial equations and the related topic of partial fractions,

curve sketching, coordinate geometry, trigonometric identities and the notions of

proof by induction or contradiction.

1.1 Simple functions and equations

It is normal practice when starting the mathematical investigation of a physical

problem to assign an algebraic symbol to the quantity whose value is sought, either

numerically or as an explicit algebraic expression. For the sake of definiteness, in

this chapter we will use x to denote this quantity most of the time. Subsequent

steps in the analysis involve applying a combination of known laws, consistency

conditions and (possibly) given constraints to derive one or more equations

satisfied by x. These equations may take many forms, ranging from a simple

polynomial equation to, say, a partial differential equation with several boundary

conditions. Some of the more complicated possibilities are treated in the later

chapters of this book, but for the present we will be concerned with techniques

for the solution of relatively straightforward algebraic equations.

1.1.1 Polynomials and polynomial equations

Firstly we consider the simplest type of equation, a polynomial equation, in which

a polynomial expression in x, denoted by f(x), is set equal to zero and thereby
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PRELIMINARY ALGEBRA

forms an equation which is satisfied by particular values of x, called the roots of

the equation:

f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 = 0. (1.1)

Here n is an integer > 0, called the degree of both the polynomial and the

equation, and the known coefficients a0, a1, . . . , an are real quantities with an �= 0.

Equations such as (1.1) arise frequently in physical problems, the coefficients ai
being determined by the physical properties of the system under study. What is

needed is to find some or all of the roots of (1.1), i.e. the x-values, αk , that satisfy

f(αk) = 0; here k is an index that, as we shall see later, can take up to n different

values, i.e. k = 1, 2, . . . , n. The roots of the polynomial equation can equally well

be described as the zeros of the polynomial. When they are real, they correspond

to the points at which a graph of f(x) crosses the x-axis. Roots that are complex

(see chapter 3) do not have such a graphical interpretation.

For polynomial equations containing powers of x greater than x4 general

methods do not exist for obtaining explicit expressions for the roots αk . Even

for n = 3 and n = 4 the prescriptions for obtaining the roots are sufficiently

complicated that it is usually preferable to obtain exact or approximate values

by other methods. Only for n = 1 and n = 2 can closed-form solutions be given.

These results will be well known to the reader, but they are given here for the

sake of completeness. For n = 1, (1.1) reduces to the linear equation

a1x + a0 = 0; (1.2)

the solution (root) is α1 = −a0/a1. For n = 2, (1.1) reduces to the quadratic

equation

a2x
2 + a1x + a0 = 0; (1.3)

the two roots α1 and α2 are given by

α1,2 =
−a1 ±

√
a2

1 − 4a2a0

2a2
. (1.4)

When discussing specifically quadratic equations, as opposed to more general

polynomial equations, it is usual to write the equation in one of the two notations

ax2 + bx + c = 0, ax2 + 2bx + c = 0, (1.5)

with respective explicit pairs of solutions

α1,2 =
−b ± √

b2 − 4ac

2a
, α1,2 =

−b ± √
b2 − ac

a
. (1.6)

Of course, these two notations are entirely equivalent and the only important

point is to associate each form of answer with the corresponding form of equation;

most people keep to one form, to avoid any possible confusion.
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1.1 SIMPLE FUNCTIONS AND EQUATIONS

If the value of the quantity appearing under the square root sign is positive

then both roots are real; if it is negative then the roots form a complex conjugate

pair, i.e. they are of the form p ± iq with p and q real (see chapter 3); if it has

zero value then the two roots are equal and special considerations usually arise.

Thus linear and quadratic equations can be dealt with in a cut-and-dried way.

We now turn to methods for obtaining partial information about the roots of

higher-degree polynomial equations. In some circumstances the knowledge that

an equation has a root lying in a certain range, or that it has no real roots at all,

is all that is actually required. For example, in the design of electronic circuits

it is necessary to know whether the current in a proposed circuit will break

into spontaneous oscillation. To test this, it is sufficient to establish whether a

certain polynomial equation, whose coefficients are determined by the physical

parameters of the circuit, has a root with a positive real part (see chapter 3);

complete determination of all the roots is not needed for this purpose. If the

complete set of roots of a polynomial equation is required, it can usually be

obtained to any desired accuracy by numerical methods such as those described

in chapter 27.

There is no explicit step-by-step approach to finding the roots of a general

polynomial equation such as (1.1). In most cases analytic methods yield only

information about the roots, rather than their exact values. To explain the relevant

techniques we will consider a particular example, ‘thinking aloud’ on paper and

expanding on special points about methods and lines of reasoning. In more

routine situations such comment would be absent and the whole process briefer

and more tightly focussed.

Example: the cubic case

Let us investigate the roots of the equation

g(x) = 4x3 + 3x2 − 6x − 1 = 0 (1.7)

or, in an alternative phrasing, investigate the zeros of g(x). We note first of all

that this is a cubic equation. It can be seen that for x large and positive g(x)

will be large and positive and, equally, that for x large and negative g(x) will

be large and negative. Therefore, intuitively (or, more formally, by continuity)

g(x) must cross the x-axis at least once and so g(x) = 0 must have at least one

real root. Furthermore, it can be shown that if f(x) is an nth-degree polynomial

then the graph of f(x) must cross the x-axis an even or odd number of times

as x varies between −∞ and +∞, according to whether n itself is even or odd.

Thus a polynomial of odd degree always has at least one real root, but one of

even degree may have no real root. A small complication, discussed later in this

section, occurs when repeated roots arise.

Having established that g(x) = 0 has at least one real root, we may ask how
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PRELIMINARY ALGEBRA

many real roots it could have. To answer this we need one of the fundamental

theorems of algebra, mentioned above:

An nth-degree polynomial equation has exactly n roots.

It should be noted that this does not imply that there are n real roots (only that

there are not more than n); some of the roots may be of the form p + iq.

To make the above theorem plausible and to see what is meant by repeated

roots, let us suppose that the nth-degree polynomial equation f(x) = 0, (1.1), has

r roots α1, α2, . . . , αr , considered distinct for the moment. That is, we suppose that

f(αk) = 0 for k = 1, 2, . . . , r, so that f(x) vanishes only when x is equal to one of

the r values αk . But the same can be said for the function

F(x) = A(x − α1)(x − α2) · · · (x − αr), (1.8)

in which A is a non-zero constant; F(x) can clearly be multiplied out to form a

polynomial expression.

We now call upon a second fundamental result in algebra: that if two poly-

nomial functions f(x) and F(x) have equal values for all values of x, then their

coefficients are equal on a term-by-term basis. In other words, we can equate

the coefficients of each and every power of x in the two expressions (1.8) and

(1.1); in particular we can equate the coefficients of the highest power of x. From

this we have Axr ≡ anx
n and thus that r = n and A = an. As r is both equal

to n and to the number of roots of f(x) = 0, we conclude that the nth-degree

polynomial f(x) = 0 has n roots. (Although this line of reasoning may make the

theorem plausible, it does not constitute a proof since we have not shown that it

is permissible to write f(x) in the form of equation (1.8).)

We next note that the condition f(αk) = 0 for k = 1, 2, . . . , r, could also be met

if (1.8) were replaced by

F(x) = A(x − α1)
m1 (x − α2)

m2 · · · (x − αr)
mr , (1.9)

with A = an. In (1.9) the mk are integers ≥ 1 and are known as the multiplicities

of the roots, mk being the multiplicity of αk . Expanding the right-hand side (RHS)

leads to a polynomial of degree m1 +m2 + · · ·+mr . This sum must be equal to n.

Thus, if any of the mk is greater than unity then the number of distinct roots, r,

is less than n; the total number of roots remains at n, but one or more of the αk
counts more than once. For example, the equation

F(x) = A(x − α1)
2(x − α2)

3(x − α3)(x − α4) = 0

has exactly seven roots, α1 being a double root and α2 a triple root, whilst α3 and

α4 are unrepeated (simple) roots.

We can now say that our particular equation (1.7) has either one or three real

roots but in the latter case it may be that not all the roots are distinct. To decide

how many real roots the equation has, we need to anticipate two ideas from the
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1.1 SIMPLE FUNCTIONS AND EQUATIONS

x x

φ1(x) φ2(x)

β1 β1

β2

β2

Figure 1.1 Two curves φ1(x) and φ2(x), both with zero derivatives at the

same values of x, but with different numbers of real solutions to φi(x) = 0.

next chapter. The first of these is the notion of the derivative of a function, and

the second is a result known as Rolle’s theorem.

The derivative f′(x) of a function f(x) measures the slope of the tangent to

the graph of f(x) at that value of x (see figure 2.1 in the next chapter). For

the moment, the reader with no prior knowledge of calculus is asked to accept

that the derivative of axn is naxn−1, so that the derivative g′(x) of the curve

g(x) = 4x3 + 3x2 − 6x − 1 is given by g′(x) = 12x2 + 6x − 6. Similar expressions

for the derivatives of other polynomials are used later in this chapter.

Rolle’s theorem states that if f(x) has equal values at two different values of x

then at some point between these two x-values its derivative is equal to zero; i.e.

the tangent to its graph is parallel to the x-axis at that point (see figure 2.2).

Having briefly mentioned the derivative of a function and Rolle’s theorem, we

now use them to establish whether g(x) has one or three real zeros. If g(x) = 0

does have three real roots αk , i.e. g(αk) = 0 for k = 1, 2, 3, then it follows from

Rolle’s theorem that between any consecutive pair of them (say α1 and α2) there

must be some real value of x at which g′(x) = 0. Similarly, there must be a further

zero of g′(x) lying between α2 and α3. Thus a necessary condition for three real

roots of g(x) = 0 is that g′(x) = 0 itself has two real roots.

However, this condition on the number of roots of g′(x) = 0, whilst necessary,

is not sufficient to guarantee three real roots of g(x) = 0. This can be seen by

inspecting the cubic curves in figure 1.1. For each of the two functions φ1(x) and

φ2(x), the derivative is equal to zero at both x = β1 and x = β2. Clearly, though,

φ2(x) = 0 has three real roots whilst φ1(x) = 0 has only one. It is easy to see that

the crucial difference is that φ1(β1) and φ1(β2) have the same sign, whilst φ2(β1)

and φ2(β2) have opposite signs.

It will be apparent that for some equations, φ(x) = 0 say, φ′(x) equals zero
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PRELIMINARY ALGEBRA

at a value of x for which φ(x) is also zero. Then the graph of φ(x) just touches

the x-axis. When this happens the value of x so found is, in fact, a double real

root of the polynomial equation (corresponding to one of the mk in (1.9) having

the value 2) and must be counted twice when determining the number of real

roots.

Finally, then, we are in a position to decide the number of real roots of the

equation

g(x) = 4x3 + 3x2 − 6x − 1 = 0.

The equation g′(x) = 0, with g′(x) = 12x2 + 6x − 6, is a quadratic equation with

explicit solutions§

β1,2 =
−3 ± √

9 + 72

12
,

so that β1 = −1 and β2 = 1
2
. The corresponding values of g(x) are g(β1) = 4 and

g(β2) = − 11
4
, which are of opposite sign. This indicates that 4x3 +3x2 −6x−1 = 0

has three real roots, one lying in the range −1 < x < 1
2

and the others one on

each side of that range.

The techniques we have developed above have been used to tackle a cubic

equation, but they can be applied to polynomial equations f(x) = 0 of degree

greater than 3. However, much of the analysis centres around the equation

f′(x) = 0 and this itself, being then a polynomial equation of degree 3 or more,

either has no closed-form general solution or one that is complicated to evaluate.

Thus the amount of information that can be obtained about the roots of f(x) = 0

is correspondingly reduced.

A more general case

To illustrate what can (and cannot) be done in the more general case we now

investigate as far as possible the real roots of

f(x) = x7 + 5x6 + x4 − x3 + x2 − 2 = 0.

The following points can be made.

(i) This is a seventh-degree polynomial equation; therefore the number of

real roots is 1, 3, 5 or 7.

(ii) f(0) is negative whilst f(∞) = +∞, so there must be at least one positive

root.

§ The two roots β1, β2 are written as β1,2. By convention β1 refers to the upper symbol in ±, β2 to
the lower symbol.
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1.1 SIMPLE FUNCTIONS AND EQUATIONS

(iii) The equation f′(x) = 0 can be written as x(7x5 + 30x4 + 4x2 − 3x+ 2) = 0

and thus x = 0 is a root. The derivative of f′(x), denoted by f′′(x), equals

42x5 + 150x4 + 12x2 − 6x + 2. That f′(x) is zero whilst f′′(x) is positive

at x = 0 indicates (subsection 2.1.8) that f(x) has a minimum there. This,

together with the facts that f(0) is negative and f(∞) = ∞, implies that

the total number of real roots to the right of x = 0 must be odd. Since

the total number of real roots must be odd, the number to the left must

be even (0, 2, 4 or 6).

This is about all that can be deduced by simple analytic methods in this case,

although some further progress can be made in the ways indicated in exercise 1.3.

There are, in fact, more sophisticated tests that examine the relative signs of

successive terms in an equation such as (1.1), and in quantities derived from

them, to place limits on the numbers and positions of roots. But they are not

prerequisites for the remainder of this book and will not be pursued further

here.

We conclude this section with a worked example which demonstrates that the

practical application of the ideas developed so far can be both short and decisive.

�For what values of k, if any, does

f(x) = x3 − 3x2 + 6x + k = 0

have three real roots?

Firstly we study the equation f′(x) = 0, i.e. 3x2 − 6x + 6 = 0. This is a quadratic equation
but, using (1.6), because 62 < 4 × 3 × 6, it can have no real roots. Therefore, it follows
immediately that f(x) has no maximum or minimum; consequently f(x) = 0 cannot have
more than one real root, whatever the value of k. �

1.1.2 Factorising polynomials

In the previous subsection we saw how a polynomial with r given distinct zeros

αk could be constructed as the product of factors containing those zeros:

f(x) = an(x − α1)
m1 (x − α2)

m2 · · · (x − αr)
mr

= anx
n + an−1x

n−1 + · · · + a1x + a0, (1.10)

with m1 +m2 + · · ·+mr = n, the degree of the polynomial. It will cause no loss of

generality in what follows to suppose that all the zeros are simple, i.e. all mk = 1

and r = n, and this we will do.

Sometimes it is desirable to be able to reverse this process, in particular when

one exact zero has been found by some method and the remaining zeros are to

be investigated. Suppose that we have located one zero, α; it is then possible to

write (1.10) as

f(x) = (x − α)f1(x), (1.11)

7

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521861535 - Mathematical Methods for Physics and Engineering, Third Edition
K. F. Riley, M. P. Hobson and S. J. Bence
Excerpt
More information

http://www.cambridge.org/0521861535
http://www.cambridge.org
http://www.cambridge.org


PRELIMINARY ALGEBRA

where f1(x) is a polynomial of degree n−1. How can we find f1(x)? The procedure

is much more complicated to describe in a general form than to carry out for

an equation with given numerical coefficients ai. If such manipulations are too

complicated to be carried out mentally, they could be laid out along the lines of

an algebraic ‘long division’ sum. However, a more compact form of calculation

is as follows. Write f1(x) as

f1(x) = bn−1x
n−1 + bn−2x

n−2 + bn−3x
n−3 + · · · + b1x + b0.

Substitution of this form into (1.11) and subsequent comparison of the coefficients

of xp for p = n, n − 1, . . . , 1, 0 with those in the second line of (1.10) generates

the series of equations

bn−1 = an,

bn−2 − αbn−1 = an−1,

bn−3 − αbn−2 = an−2,

...

b0 − αb1 = a1,

−αb0 = a0.

These can be solved successively for the bj , starting either from the top or from

the bottom of the series. In either case the final equation used serves as a check;

if it is not satisfied, at least one mistake has been made in the computation –

or α is not a zero of f(x) = 0. We now illustrate this procedure with a worked

example.

�Determine by inspection the simple roots of the equation

f(x) = 3x4 − x3 − 10x2 − 2x + 4 = 0

and hence, by factorisation, find the rest of its roots.

From the pattern of coefficients it can be seen that x = −1 is a solution to the equation.
We therefore write

f(x) = (x + 1)(b3x
3 + b2x

2 + b1x + b0),

where

b3 = 3,

b2 + b3 = −1,

b1 + b2 = −10,

b0 + b1 = −2,

b0 = 4.

These equations give b3 = 3, b2 = −4, b1 = −6, b0 = 4 (check) and so

f(x) = (x + 1)f1(x) = (x + 1)(3x3 − 4x2 − 6x + 4).
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1.1 SIMPLE FUNCTIONS AND EQUATIONS

We now note that f1(x) = 0 if x is set equal to 2. Thus x − 2 is a factor of f1(x), which
therefore can be written as

f1(x) = (x − 2)f2(x) = (x − 2)(c2x
2 + c1x + c0)

with

c2 = 3,

c1 − 2c2 = −4,

c0 − 2c1 = −6,

−2c0 = 4.

These equations determine f2(x) as 3x2 + 2x − 2. Since f2(x) = 0 is a quadratic equation,
its solutions can be written explicitly as

x =
−1 ± √

1 + 6

3
.

Thus the four roots of f(x) = 0 are −1, 2, 1
3
(−1 +

√
7) and 1

3
(−1 − √

7). �

1.1.3 Properties of roots

From the fact that a polynomial equation can be written in any of the alternative

forms

f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 = 0,

f(x) = an(x − α1)
m1 (x − α2)

m2 · · · (x − αr)
mr = 0,

f(x) = an(x − α1)(x − α2) · · · (x − αn) = 0,

it follows that it must be possible to express the coefficients ai in terms of the

roots αk . To take the most obvious example, comparison of the constant terms

(formally the coefficient of x0) in the first and third expressions shows that

an(−α1)(−α2) · · · (−αn) = a0,

or, using the product notation,

n∏
k=1

αk = (−1)n
a0

an
. (1.12)

Only slightly less obvious is a result obtained by comparing the coefficients of

xn−1 in the same two expressions of the polynomial:

n∑
k=1

αk = −an−1

an
. (1.13)

Comparing the coefficients of other powers of x yields further results, though

they are of less general use than the two just given. One such, which the reader

may wish to derive, is

n∑
j=1

n∑
k>j

αjαk =
an−2

an
. (1.14)
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PRELIMINARY ALGEBRA

In the case of a quadratic equation these root properties are used sufficiently

often that they are worth stating explicitly, as follows. If the roots of the quadratic

equation ax2 + bx + c = 0 are α1 and α2 then

α1 + α2 = −b

a
,

α1α2 =
c

a
.

If the alternative standard form for the quadratic is used, b is replaced by 2b in

both the equation and the first of these results.

�Find a cubic equation whose roots are −4, 3 and 5.

From results (1.12) – (1.14) we can compute that, arbitrarily setting a3 = 1,

−a2 =

3∑
k=1

αk = 4, a1 =

3∑
j=1

3∑
k>j

αjαk = −17, a0 = (−1)3
3∏

k=1

αk = 60.

Thus a possible cubic equation is x3 + (−4)x2 + (−17)x+(60) = 0. Of course, any multiple
of x3 − 4x2 − 17x + 60 = 0 will do just as well. �

1.2 Trigonometric identities

So many of the applications of mathematics to physics and engineering are

concerned with periodic, and in particular sinusoidal, behaviour that a sure and

ready handling of the corresponding mathematical functions is an essential skill.

Even situations with no obvious periodicity are often expressed in terms of

periodic functions for the purposes of analysis. Later in this book whole chapters

are devoted to developing the techniques involved, but as a necessary prerequisite

we here establish (or remind the reader of) some standard identities with which he

or she should be fully familiar, so that the manipulation of expressions containing

sinusoids becomes automatic and reliable. So as to emphasise the angular nature

of the argument of a sinusoid we will denote it in this section by θ rather than x.

1.2.1 Single-angle identities

We give without proof the basic identity satisfied by the sinusoidal functions sin θ

and cos θ, namely

cos2 θ + sin2 θ = 1. (1.15)

If sin θ and cos θ have been defined geometrically in terms of the coordinates of

a point on a circle, a reference to the name of Pythagoras will suffice to establish

this result. If they have been defined by means of series (with θ expressed in

radians) then the reader should refer to Euler’s equation (3.23) on page 93, and

note that eiθ has unit modulus if θ is real.
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