The science of rock physics addresses the relationships between geophysical observations and the underlying physical properties of rocks, such as composition, porosity, and pore fluid content. The *Rock Physics Handbook* distills a vast quantity of background theory and laboratory results into a series of concise, self-contained chapters, which can be quickly accessed by those seeking practical solutions to problems in geophysical data interpretation.

In addition to the wide range of topics presented in the First Edition (including wave propagation, effective media, elasticity, electrical properties, and pore fluid flow and diffusion), this Second Edition also presents major new chapters on granular material and velocity–porosity–clay models for clastic sediments. Other new and expanded topics include anisotropic seismic signatures, nonlinear elasticity, wave propagation in thin layers, borehole waves, models for fractured media, poroelastic models, attenuation models, and cross-property relations between seismic and electrical parameters. This new edition also provides an enhanced set of appendices with key empirical results, data tables, and an atlas of reservoir rock properties expanded to include carbonates, clays, and gas hydrates.

Supported by a website hosting MATLAB routines for implementing the various rock physics formulas presented in the book, the Second Edition of *The Rock Physics Handbook* is a vital resource for advanced students and university faculty, as well as in-house geophysicists and engineers working in the petroleum industry. It will also be of interest to practitioners of environmental geophysics, geomechanics, and energy resources engineering interested in quantitative subsurface characterization and modeling of sediment properties.

Gary Mavko received his Ph.D. in Geophysics from Stanford University in 1977 where he is now Professor (Research) of Geophysics. Professor Mavko co-directs the Stanford Rock Physics and Borehole Geophysics Project (SRB), a group of approximately 25 researchers working on problems related to wave propagation in earth materials. Professor Mavko is also a co-author of *Quantitative Seismic Interpretation* (Cambridge University Press, 2005), and has been an invited instructor for numerous industry courses on rock physics for seismic reservoir characterization. He received the Honorary Membership award from the Society of Exploration Geophysicists (SEG) in 2001, and was the SEG Distinguished Lecturer in 2006.

Tapan Mukerji received his Ph.D. in Geophysics from Stanford University in 1995 and is now an Associate Professor (Research) in Energy Resources Engineering and
a member of the Stanford Rock Physics Project at Stanford University. Professor Mukerji co-directs the Stanford Center for Reservoir Forecasting (SCRF) focusing on problems related to uncertainty and data integration for reservoir modeling. His research interests include wave propagation and statistical rock physics, and he specializes in applied rock physics and geostatistical methods for seismic reservoir characterization, fracture detection, time-lapse monitoring, and shallow subsurface environmental applications. Professor Mukerji is also a co-author of *Quantitative Seismic Interpretation*, and has taught numerous industry courses. He received the Karcher award from the Society of Exploration Geophysicists in 2000.

Jack Dvorkin received his Ph.D. in Continuum Mechanics in 1980 from Moscow University in the USSR. He has worked in the Petroleum Industry in the USSR and USA, and is currently a Senior Research Scientist with the Stanford Rock Physics Project at Stanford University. Dr Dvorkin has been an invited instructor for numerous industry courses throughout the world, on rock physics and quantitative seismic interpretation. He is a member of American Geophysical Union, Society of Exploration Geophysicists, American Association of Petroleum Geologists, and the Society of Petroleum Engineers.

Tools for Seismic Analysis of Porous Media

Gary Mavko
Stanford University, USA

Tapan Mukerji
Stanford University, USA

Jack Dvorkin
Stanford University, USA
Contents

Preface xi

1 Basic tools 1

1.1 The Fourier transform 1
1.2 The Hilbert transform and analytic signal 6
1.3 Statistics and probability 9
1.4 Coordinate transformations 18

2 Elasticity and Hooke’s law 21

2.1 Elastic moduli: isotropic form of Hooke’s law 21
2.2 Anisotropic form of Hooke’s law 23
2.3 Thomsen’s notation for weak elastic anisotropy 35
2.4 Tsvankin’s extended Thomsen parameters for orthorhombic media 39
2.5 Third-order nonlinear elasticity 40
2.6 Effective stress properties of rocks 43
2.7 Stress-induced anisotropy in rocks 47
2.8 Strain components and equations of motion in cylindrical and spherical coordinate systems 54
2.9 Deformation of inclusions and cavities in elastic solids 56
2.10 Deformation of a circular hole: borehole stresses 68
2.11 Mohr’s circles 74
2.12 Static and dynamic moduli 76

3 Seismic wave propagation 81

3.1 Seismic velocities 81
3.2 Phase, group, and energy velocities 83
3. \section{NMO in isotropic and anisotropic media}
- 3.3 NMO in isotropic and anisotropic media: 86
- 3.4 Impedance, reflectivity, and transmissivity: 93
- 3.5 Reflectivity and amplitude variations with offset (AVO) in isotropic media: 96
- 3.6 Plane-wave reflectivity in anisotropic media: 105
- 3.7 Elastic impedance: 115
- 3.8 Viscoelasticity and \(\mathcal{Q} \): 121
- 3.9 Kramers–Kronig relations between velocity dispersion and \(\mathcal{Q} \): 127
- 3.10 Waves in layered media: full-waveform synthetic seismograms: 129
- 3.11 Waves in layered media: stratigraphic filtering and velocity dispersion: 134
- 3.12 Waves in layered media: frequency-dependent anisotropy, dispersion, and attenuation: 138
- 3.13 Scale-dependent seismic velocities in heterogeneous media: 146
- 3.14 Scattering attenuation: 150
- 3.15 Waves in cylindrical rods: the resonant bar: 155
- 3.16 Waves in boreholes: 160

4. \section{Effective elastic media: bounds and mixing laws}
- 4.1 Hashin–Shtrikman–Walpole bounds: 169
- 4.2 Voigt and Reuss bounds: 174
- 4.3 Wood’s formula: 175
- 4.4 Voigt–Reuss–Hill average moduli estimate: 177
- 4.5 Composite with uniform shear modulus: 178
- 4.6 Rock and pore compressibilities and some pitfalls: 179
- 4.7 Kuster and Toksöz formulation for effective moduli: 183
- 4.8 Self-consistent approximations of effective moduli: 185
- 4.9 Differential effective medium model: 190
- 4.10 Hudson’s model for cracked media: 194
- 4.11 Eshelby–Cheng model for cracked anisotropic media: 203
- 4.12 \(T \)-matrix inclusion models for effective moduli: 205
- 4.13 Elastic constants in finely layered media: Backus average: 210
- 4.14 Elastic constants in finely layered media: general layer anisotropy: 215
- 4.15 Poroelastic Backus average: 216
- 4.16 Seismic response to fractures: 219
- 4.17 Bound-filling models: 224

5. \section{Granular media}
- 5.1 Packing and sorting of spheres: 229
- 5.2 Thomas–Stieber model for sand–shale systems: 237
Contents

5.3	Particle size and sorting	242
5.4	Random spherical grain packings: contact models and effective moduli	245
5.5	Ordered spherical grain packings: effective moduli	264

6 Fluid effects on wave propagation

6.1 Biot’s velocity relations 266
6.2 Geertsma–Smit approximations of Biot’s relations 272
6.3 Gassmann’s relations: isotropic form 273
6.4 Brown and Korringa’s generalized Gassmann equations for mixed mineralogy 282
6.5 Fluid substitution in anisotropic rocks 284
6.6 Generalized Gassmann’s equations for composite porous media 287
6.7 Generalized Gassmann equations for solid pore-filling material 290
6.8 Fluid substitution in thinly laminated reservoirs 292
6.9 BAM: Marion’s bounding average method 295
6.10 Mavko–Jizba squirt relations 297
6.11 Extension of Mavko–Jizba squirt relations for all frequencies 298
6.12 Biot–squirt model 302
6.13 Chapman et al. squirt model 304
6.14 Anisotropic squirt 306
6.15 Common features of fluid-related velocity dispersion mechanisms 310
6.16 Dvorkin–Mavko attenuation model 315
6.17 Partial and multiphase saturations 320
6.18 Partial saturation: White and Dutta–Odé model for velocity dispersion and attenuation 326
6.19 Velocity dispersion, attenuation, and dynamic permeability in heterogeneous poroelastic media 331
6.20 Waves in a pure viscous fluid 338
6.21 Physical properties of gases and fluids 339

7 Empirical relations

7.1 Velocity–porosity models: critical porosity and Nur’s modified Voigt average 347
7.2 Velocity–porosity models: Geertsma’s empirical relations for compressibility 350
7.3 Velocity–porosity models: Wyllie’s time-average equation 350
7.4 Velocity–porosity models: Raymer–Hunt–Gardner relations 353
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>Velocity–porosity–clay models: Han’s empirical relations for shaley sandstones</td>
<td>355</td>
</tr>
<tr>
<td>7.6</td>
<td>Velocity–porosity–clay models: Tosaya’s empirical relations for shaley sandstones</td>
<td>357</td>
</tr>
<tr>
<td>7.7</td>
<td>Velocity–porosity–clay models: Castagna’s empirical relations for velocities</td>
<td>358</td>
</tr>
<tr>
<td>7.8</td>
<td>V_P–V_S–density models: Brocher’s compilation</td>
<td>359</td>
</tr>
<tr>
<td>7.9</td>
<td>V_P–V_S relations</td>
<td>363</td>
</tr>
<tr>
<td>7.10</td>
<td>Velocity–density relations</td>
<td>380</td>
</tr>
<tr>
<td>7.11</td>
<td>Eaton and Bowers pore-pressure relations</td>
<td>383</td>
</tr>
<tr>
<td>7.12</td>
<td>Kan and Swan pore-pressure relations</td>
<td>383</td>
</tr>
<tr>
<td>7.13</td>
<td>Attenuation and quality factor relations</td>
<td>384</td>
</tr>
<tr>
<td>7.14</td>
<td>Velocity–porosity–strength relations</td>
<td>386</td>
</tr>
<tr>
<td>8</td>
<td>Flow and diffusion</td>
<td>389</td>
</tr>
<tr>
<td>8.1</td>
<td>Darcy’s law</td>
<td>389</td>
</tr>
<tr>
<td>8.2</td>
<td>Viscous flow</td>
<td>394</td>
</tr>
<tr>
<td>8.3</td>
<td>Capillary forces</td>
<td>396</td>
</tr>
<tr>
<td>8.4</td>
<td>Kozeny–Carman relation for flow</td>
<td>401</td>
</tr>
<tr>
<td>8.5</td>
<td>Permeability relations with S_{wi}</td>
<td>407</td>
</tr>
<tr>
<td>8.6</td>
<td>Permeability of fractured formations</td>
<td>410</td>
</tr>
<tr>
<td>8.7</td>
<td>Diffusion and filtration: special cases</td>
<td>411</td>
</tr>
<tr>
<td>9</td>
<td>Electrical properties</td>
<td>414</td>
</tr>
<tr>
<td>9.1</td>
<td>Bounds and effective medium models</td>
<td>414</td>
</tr>
<tr>
<td>9.2</td>
<td>Velocity dispersion and attenuation</td>
<td>418</td>
</tr>
<tr>
<td>9.3</td>
<td>Empirical relations</td>
<td>421</td>
</tr>
<tr>
<td>9.4</td>
<td>Electrical conductivity in porous rocks</td>
<td>424</td>
</tr>
<tr>
<td>9.5</td>
<td>Cross-property bounds and relations between elastic and electrical parameters</td>
<td>429</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
<td>437</td>
</tr>
<tr>
<td>A.1</td>
<td>Typical rock properties</td>
<td>437</td>
</tr>
<tr>
<td>A.2</td>
<td>Conversions</td>
<td>452</td>
</tr>
<tr>
<td>A.3</td>
<td>Physical constants</td>
<td>456</td>
</tr>
<tr>
<td>A.4</td>
<td>Moduli and density of common minerals</td>
<td>457</td>
</tr>
<tr>
<td>A.5</td>
<td>Velocities and moduli of ice and methane hydrate</td>
<td>457</td>
</tr>
<tr>
<td>Contents</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>A.6 Physical properties of common gases</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>A.7 Velocity, moduli, and density of carbon dioxide</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>A.8 Standard temperature and pressure</td>
<td>474</td>
<td></td>
</tr>
</tbody>
</table>

References 479
Index 503
Preface to the Second Edition

In the decade since publication of the *Rock Physics Handbook*, research and use of rock physics has thrived. We hope that the First Edition has played a useful role in this era by making the scattered and eclectic mass of rock physics knowledge more accessible to experts and nonexperts, alike.

While preparing this Second Edition, our objective was still to summarize in a convenient form many of the commonly needed theoretical and empirical relations of rock physics. Our approach was to present results, with a few of the key assumptions and limitations, and almost never any derivations. Our intention was to create a quick reference and not a textbook. Hence, we chose to encapsulate a broad range of topics rather than to give in-depth coverage of a few. Even so, there are many topics that we have not addressed. While we have summarized the assumptions and limitations of each result, we hope that the brevity of our discussions does not give the impression that application of any rock physics result to real rocks is free of pitfalls. We assume that the reader will be generally aware of the various topics, and, if not, we provide a few references to the more complete descriptions in books and journals.

The handbook contains 101 sections on basic mathematical tools, elasticity theory, wave propagation, effective media, elasticity and poroelasticity, granular media, and pore-fluid flow and diffusion, plus overviews of dispersion mechanisms, fluid substitution, and V_P-V_S relations. The book also presents empirical results derived from reservoir rocks, sediments, and granular media, as well as tables of mineral data and an atlas of reservoir rock properties. The emphasis still focuses on elastic and seismic topics, though the discussion of electrical and cross seismic-electrical relations has grown. An associated website (http://srb.stanford.edu/books) offers MATLAB codes for many of the models and results described in the Second Edition.

In this Second Edition, Chapter 2 has been expanded to include new discussions on elastic anisotropy including the Kelvin notation and eigenvalues for stiffnesses, effective stress behavior of rocks, and stress-induced elasticity anisotropy. Chapter 3 includes new material on anisotropic normal moveout (NMO) and reflectivity, amplitude variation with offset (AVO) relations, plus a new section on elastic impedance (including anisotropic forms), and updates on wave propagation in stratified media, and borehole waves. Chapter 4 includes updates of inclusion-based effective media models, thinly layered media, and fractured rocks. Chapter 5 contains
extensive new sections on granular media, including packing, particle size, sorting, sand–clay mixture models, and elastic effective medium models for granular materials. Chapter 6 expands the discussion of fluid effects on elastic properties, including fluid substitution in laminated media, and models for fluid-related velocity dispersion in heterogeneous poroelastic media. Chapter 7 contains new sections on empirical velocity–porosity–mineralogy relations, $V_p–V_s$ relations, pore-pressure relations, static and dynamic moduli, and velocity–strength relations. Chapter 8 has new discussions on capillary effects, irreducible water saturation, permeability, and flow in fractures. Chapter 9 includes new relations between electrical and seismic properties. The Appendices has new tables of physical constants and properties for common gases, ice, and methane hydrate.

We wish to thank the students, scientific staff, and industrial affiliates of the Stanford Rock Physics and Borehole Geophysics (SRB) project for many valuable comments and insights. While preparing the Second Edition we found discussions with Tiziana Vanorio, Kaushik Bandyopadhyay, Ezequiel Gonzalez, Youngseuk Keehm, Robert Zimmermann, Boris Gurevich, Juan-Mauricio Florez, Anyela Marcote-Rios, Mike Payne, Mike Batzle, Jim Berryman, Pratap Sahay, and Tor Arne Johansen, to be extremely helpful. Li Teng contributed to the chapter on anisotropic AVOZ, and Ran Bachrach contributed to the chapter on dielectric properties. Dawn Burgess helped tremendously with editing, graphics, and content. We also wish to thank the readers of the First Edition who helped us to track down and fix errata.

And as always, we are indebted to Amos Nur, whose work, past and present, has helped to make the field of rock physics what it is today.

Gary Mavko, Tapan Mukerji, and Jack Dvorkin.