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Playing games with algorithms:
Algorithmic Combinatorial Game Theory

ERIK D. DEMAINE AND ROBERT A. HEARN

ABSTRACT. Combinatorial games lead to several interesting, clean problems

in algorithms and complexity theory, many of which remain open. The pur-

pose of this paper is to provide an overview of the area to encourage further

research. In particular, we begin with general background in Combinatorial

Game Theory, which analyzes ideal play in perfect-information games, and

Constraint Logic, which provides a framework for showing hardness. Then we

survey results about the complexity of determining ideal play in these games,

and the related problems of solving puzzles, in terms of both polynomial-time

algorithms and computational intractability results. Our review of background

and survey of algorithmic results are by no means complete, but should serve

as a useful primer.

1. Introduction

Many classic games are known to be computationally intractable (assuming

P¤NP): one-player puzzles are often NP-complete (for instance Minesweeper)

or PSPACE-complete (Rush Hour), and two-player games are often PSPACE-

complete (Othello) or EXPTIME-complete (Checkers, Chess, and Go). Surpris-

ingly, many seemingly simple puzzles and games are also hard. Other results

are positive, proving that some games can be played optimally in polynomial

time. In some cases, particularly with one-player puzzles, the computationally

tractable games are still interesting for humans to play.

We begin by reviewing some basics of Combinatorial Game Theory in Sec-

tion 2, which gives tools for designing algorithms, followed by reviewing the

A preliminary version of this paper appears in the Proceedings of the 26th International Symposium on Mathe-

matical Foundations of Computer Science, Lecture Notes in Computer Science 2136, Czech Republic, August

2001, pages 18–32. The latest version can be found at http://arXiv.org/abs/cs.CC/0106019.
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4 ERIK D. DEMAINE AND ROBERT A. HEARN

relatively new theory of Constraint Logic in Section 3, which gives tools for

proving hardness. In the bulk of this paper, Sections 4–6 survey many of the

algorithmic and hardness results for combinatorial games and puzzles. Sec-

tion 7 concludes with a small sample of difficult open problems in algorithmic

Combinatorial Game Theory.

Combinatorial Game Theory is to be distinguished from other forms of game

theory arising in the context of economics. Economic game theory has many

applications in computer science as well, for example, in the context of auctions

[dVV03] and analyzing behavior on the Internet [Pap01].

2. Combinatorial Game Theory

A combinatorial game typically involves two players, often called Left and

Right, alternating play in well-defined moves. However, in the interesting case

of a combinatorial puzzle, there is only one player, and for cellular automata

such as Conway’s Game of Life, there are no players. In all cases, no random-

ness or hidden information is permitted: all players know all information about

gameplay (perfect information). The problem is thus purely strategic: how to

best play the game against an ideal opponent.

It is useful to distinguish several types of two-player perfect-information

games [BCG04, pp. 14–15]. A common assumption is that the game terminates

after a finite number of moves (the game is finite or short), and the result is a

unique winner. Of course, there are exceptions: some games (such as Life and

Chess) can be drawn out forever, and some games (such as tic-tac-toe and Chess)

define ties in certain cases. However, in the combinatorial-game setting, it is

useful to define the winner as the last player who is able to move; this is called

normal play. If, on the other hand, the winner is the first player who cannot

move, this is called misère play. (We will normally assume normal play.) A

game is loopy if it is possible to return to previously seen positions (as in Chess,

for example). Finally, a game is called impartial if the two players (Left and

Right) are treated identically, that is, each player has the same moves available

from the same game position; otherwise the game is called partizan.

A particular two-player perfect-information game without ties or draws can

have one of four outcomes as the result of ideal play: player Left wins, player

Right wins, the first player to move wins (whether it is Left or Right), or the

second player to move wins. One goal in analyzing two-player games is to

determine the outcome as one of these four categories, and to find a strategy

for the winning player to win. Another goal is to compute a deeper structure to

games described in the remainder of this section, called the value of the game.

A beautiful mathematical theory has been developed for analyzing two-player

combinatorial games. A new introductory book on the topic is Lessons in Play
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ALGORITHMIC COMBINATORIAL GAME THEORY 5

by Albert, Nowakowski, and Wolfe [ANW07]; the most comprehensive refer-

ence is the book Winning Ways by Berlekamp, Conway, and Guy [BCG04]; and a

more mathematical presentation is the book On Numbers and Games by Conway

[Con01]. See also [Con77; Fra96] for overviews and [Fra07] for a bibliography.

The basic idea behind the theory is simple: a two-player game can be described

by a rooted tree, where each node has zero or more left branches corresponding

to options for player Left to move and zero or more right branches corresponding

to options for player Right to move; leaves correspond to finished games, with

the winner determined by either normal or misère play. The interesting parts

of Combinatorial Game Theory are the several methods for manipulating and

analyzing such games/trees. We give a brief summary of some of these methods

in this section.

2.1. Conway’s surreal numbers. A richly structured special class of two-

player games are John H. Conway’s surreal numbers1 [Con01; Knu74; Gon86;

All87], a vast generalization of the real and ordinal number systems. Basically,

a surreal number fL j Rg is the “simplest” number larger than all Left options

(in L) and smaller than all Right options (in R); for this to constitute a number,

all Left and Right options must be numbers, defining a total order, and each

Left option must be less than each Right option. See [Con01] for more formal

definitions.

For example, the simplest number without any larger-than or smaller-than

constraints, denoted f j g, is 0; the simplest number larger than 0 and without

smaller-than constraints, denoted f0 j g, is 1; and the simplest number larger

than 0 and 1 (or just 1), denoted f0; 1 j g, is 2. This method can be used to

generate all natural numbers and indeed all ordinals. On the other hand, the

simplest number less than 0, denoted f j 0g, is �1; similarly, all negative integers

can be generated. Another example is the simplest number larger than 0 and

smaller than 1, denoted f0 j 1g, which is 1

2
; similarly, all dyadic rationals can be

generated. After a countably infinite number of such construction steps, all real

numbers can be generated; after many more steps, the surreals are all numbers

that can be generated in this way.

Surreal numbers form an ordered field, so in particular they support the oper-

ations of addition, subtraction, multiplication, division, roots, powers, and even

integration in many situations. (For those familiar with ordinals, contrast with

surreals which define !�1, 1=!,
p

!, etc.) As such, surreal numbers are useful

in their own right for cleaner forms of analysis; see, e.g., [All87].

What is interesting about the surreals from the perspective of combinatorial

game theory is that they are a subclass of all two-player perfect-information

1The name “surreal numbers” is actually due to Knuth [Knu74]; see [Con01].
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6 ERIK D. DEMAINE AND ROBERT A. HEARN

Let x D xLjxR be a game.

� x � y precisely if every xL < y and every yR > x.

� x D y precisely if x � y and x � y; otherwise x ¤ y.

� x < y precisely if x � y and x ¤ y, or equivalently, x � y and x 6� y.

� �x D�xRj �xL.

� xCy D xLCy; xCyLjxRCy; xCyR.

� x is impartial precisely if xL and xR are identical sets and recursively

every position (2 xL D xR) is impartial.

� A one-pile Nim game is defined by

�nD �0; : : : ;�.n� 1/j � 0; : : : ;�.n� 1/;

together with �0D 0.

Table 1. Formal definitions of some algebra on two-player perfect-infor-
mation games. In particular, all of these notions apply to surreal numbers.

games, and some of the surreal structure, such as addition and subtraction, car-

ries over to general games. Furthermore, while games are not totally ordered,

they can still be compared to some surreal numbers and, amazingly, how a game

compares to the surreal number 0 determines exactly the outcome of the game.

This connection is detailed in the next few paragraphs.

First we define some algebraic structure of games that carries over from

surreal numbers; see Table 1 for formal definitions. Two-player combinatorial

games, or trees, can simply be represented as fL j Rg where, in contrast to

surreal numbers, no constraints are placed on L and R. The negation of a game

is the result of reversing the roles of the players Left and Right throughout the

game. The (disjunctive) sum of two (sub)games is the game in which, at each

player’s turn, the player has a binary choice of which subgame to play, and

makes a move in precisely that subgame. A partial order is defined on games

recursively: a game x is less than or equal to a game y if every Left option of

x is less than y and every Right option of y is more than x. (Numeric) equality

is defined by being both less than or equal to and more than or equal to. Strictly

inequalities, as used in the definition of less than or equal to, are defined in the

obvious manner.

Note that while f�1 j 1g D 0 D f j g in terms of numbers, f�1 j 1g and f j g
denote different games (lasting 1 move and 0 moves, respectively), and in this

sense are equal in value but not identical symbolically or game-theoretically.

Nonetheless, the games f�1 j 1g and f j g have the same outcome: the second

player to move wins.
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ALGORITHMIC COMBINATORIAL GAME THEORY 7

Amazingly, this holds in general: two equal numbers represent games with

equal outcome (under ideal play). In particular, all games equal to 0 have the

outcome that the second player to move wins. Furthermore, all games equal to

a positive number have the outcome that the Left player wins; more generally,

all positive games (games larger than 0) have this outcome. Symmetrically, all

negative games have the outcome that the Right player wins (this follows auto-

matically by the negation operation). Examples of zero, positive, and negative

games are the surreal numbers themselves; an additional example is described

below.

There is one outcome not captured by the characterization into zero, positive,

and negative games: the first player to move wins. To find such a game we

must obviously look beyond the surreal numbers. Furthermore, we must look

for games G that are incomparable with zero (none of G D 0, G < 0, or G > 0

hold); such games are called fuzzy with 0, denoted G k 0.

An example of a game that is not a surreal number is f1 j 0g; there fails to

be a number strictly between 1 and 0 because 1 � 0. Nonetheless, f1 j 0g is a

game: Left has a single move leading to game 1, from which Right cannot move,

and Right has a single move leading to game 0, from which Left cannot move.

Thus, in either case, the first player to move wins. The claim above implies that

f1 j 0g k 0. Indeed, f1 j 0g kx for all surreal numbers x, 0 � x � 1. In contrast,

x < f1 j 0g for all x < 0 and f1 j 0g< x for all 1 < x. In general it holds that a

game is fuzzy with some surreal numbers in an interval Œ�n; n� but comparable

with all surreals outside that interval. Another example of a game that is not a

number is f2 j 1g, which is positive (> 0), and hence Right wins, but fuzzy with

numbers in the range Œ1; 2�.

For brevity we omit many other useful notions in Combinatorial Game The-

ory, such as additional definitions of summation, superinfinitesimal games � and

", mass, temperature, thermographs, the simplest form of a game, remoteness,

and suspense; see [BCG04; Con01].

2.2. Sprague–Grundy theory. A celebrated early result in Combinatorial

Game Theory is the characterization of impartial two-player perfect-information

games, discovered independently in the 1930’s by Sprague [Spr36] and Grundy

[Gru39]. Recall that a game is impartial if it does not distinguish between the

players Left and Right (see Table 1 for a more formal definition). The Sprague–

Grundy theory [Spr36; Gru39; Con01; BCG04] states that every finite impartial

game is equivalent to an instance of the game of Nim, characterized by a single

natural number n. This theory has since been generalized to all impartial games

by generalizing Nim to all ordinals n; see [Con01; Smi66].

Nim [Bou02] is a game played with several heaps, each with a certain number

of tokens. A Nim game with a single heap of size n is denoted by �n and is
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8 ERIK D. DEMAINE AND ROBERT A. HEARN

called a nimber. During each move a player can pick any pile and reduce it to

any smaller nonnegative integer size. The game ends when all piles have size

0. Thus, a single pile �n can be reduced to any of the smaller piles �0, �1, . . . ,

�.n�1/. Multiple piles in a game of Nim are independent, and hence any game

of Nim is a sum of single-pile games �n for various values of n. In fact, a game

of Nim with k piles of sizes n1, n2, . . . , nk is equivalent to a one-pile Nim game

�n, where n is the binary XOR of n1, n2, . . . , nk . As a consequence, Nim can

be played optimally in polynomial time (polynomial in the encoding size of the

pile sizes).

Even more surprising is that every impartial two-player perfect-information

game has the same value as a single-pile Nim game, �n for some n. The number

n is called the G-value, Grundy-value, or Sprague–Grundy function of the game.

It is easy to define: suppose that game x has k options y1; : : : ; yk for the first

move (independent of which player goes first). By induction, we can compute

y1 D �n1, . . . , yk D �nk . The theorem is that x equals �n where n is the

smallest natural number not in the set fn1; : : : ; nkg. This number n is called the

minimum excluded value or mex of the set. This description has also assumed

that the game is finite, but this is easy to generalize [Con01; Smi66].

The Sprague–Grundy function can increase by at most 1 at each level of the

game tree, and hence the resulting nimber is linear in the maximum number of

moves that can be made in the game; the encoding size of the nimber is only

logarithmic in this count. Unfortunately, computing the Sprague–Grundy func-

tion for a general game by the obvious method uses time linear in the number

of possible states, which can be exponential in the nimber itself.

Nonetheless, the Sprague–Grundy theory is extremely helpful for analyzing

impartial two-player games, and for many games there is an efficient algorithm

to determine the nimber. Examples include Nim itself, Kayles, and various

generalizations [GS56b]; and Cutcake and Maundy Cake [BCG04, pp. 24–27].

In all of these examples, the Sprague–Grundy function has a succinct charac-

terization (if somewhat difficult to prove); it can also be easily computed using

dynamic programming.

The Sprague–Grundy theory seems difficult to generalize to the superficially

similar case of misère play, where the goal is to be the first player unable to

move. Certain games have been solved in this context over the years, including

Nim [Bou02]; see, e.g., [Fer74; GS56a]. Recently a general theory has emerged

for tackling misère combinatorial games, based on commutative monoids called

“misère quotients” that localize the problem to certain restricted game scenarios.

This theory was introduced by Plambeck [Pla05] and further developed by Plam-

beck and Siegel [PS07]. For good descriptions of the theory, see Plambeck’s
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ALGORITHMIC COMBINATORIAL GAME THEORY 9

survey [Plaa], Siegel’s lecture notes [Sie06], and a webpage devoted to the topic

[Plab].

2.3. Strategy stealing. Another useful technique in Combinatorial Game The-

ory for proving that a particular player must win is strategy stealing. The basic

idea is to assume that one player has a winning strategy, and prove that in fact

the other player has a winning strategy based on that strategy. This contradiction

proves that the second player must in fact have a winning strategy. An example

of such an argument is given in Section 4.1. Unfortunately, such a proof by

contradiction gives no indication of what the winning strategy actually is, only

that it exists. In many situations, such as the one in Section 4.1, the winner is

known but no polynomial-time winning strategy is known.

2.4. Puzzles. There is little theory for analyzing combinatorial puzzles (one-

player games) along the lines of the two-player theory summarized in this sec-

tion. We present one such viewpoint here. In most puzzles, solutions subdivide

into a sequence of moves. Thus, a puzzle can be viewed as a tree, similar to

a two-player game except that edges are not distinguished between Left and

Right. With the view that the game ends only when the puzzle is solved, the

goal is then to reach a position from which there are no valid moves (normal

play). Loopy puzzles are common; to be more explicit, repeated subtrees can

be converted into self-references to form a directed graph, and losing terminal

positions can be given explicit loops to themselves.

A consequence of the above view is that a puzzle is basically an impartial two-

player game except that we are not interested in the outcome from two players

alternating in moves. Rather, questions of interest in the context of puzzles are

(a) whether a given puzzle is solvable, and (b) finding the solution with the

fewest moves. An important open direction of research is to develop a general

theory for resolving such questions, similar to the two-player theory.

3. Constraint logic

Combinatorial Game Theory provides a theoretical framework for giving pos-

itive algorithmic results for games, but does not naturally accommodate puzzles.

In contrast, negative algorithmic results — hardness and completeness within

computational complexity classes — are more uniform: puzzles and games have

analogous prototypical proof structures. Furthermore, a relatively new theory

called Constraint Logic attempts to tie together a wide range of hardness proofs

for both puzzles and games.

Proving that a problem is hard within a particular complexity class (like NP,

PSPACE, or EXPTIME) almost always involves a reduction to the problem from

a known hard problem within the class. For example, the canonical problem to
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10 ERIK D. DEMAINE AND ROBERT A. HEARN

reduce from for NP-hardness is Boolean Satisfiability (SAT) [Coo71]. Reducing

SAT to a puzzle of interest proves that that puzzle is NP-hard. Similarly, the

canonical problem to reduce from for PSPACE-hardness is Quantified Boolean

Formulas (QBF) [SM73].

Constraint Logic [DH08] is a useful tool for showing hardness of games and

puzzles in a variety of settings that has emerged in recent years. Indeed, many

of the hardness results mentioned in this survey are based on reductions from

Constraint Logic. Constraint Logic is a family of games where players reverse

edges on a planar directed graph while satisfying vertex in-flow constraints.

Each edge has a weight of 1 or 2. Each vertex has degree 3 and requires that

the sum of the weights of inward-directed edges is at least 2. Vertices may be

restricted to two types: AND vertices have incident edge weights of 1, 1, and 2;

and OR vertices have incident edge weights of 2, 2, and 2. A player’s goal is to

eventually reverse a given edge.

This game family can be interpreted in many game-theoretic settings, ranging

from zero-player automata to multiplayer games with hidden information. In

particular, there are natural versions of Constraint Logic corresponding to one-

player games (puzzles) and two-player games, both of bounded and unbounded

length. (Here we refer to whether the length of the game is bounded by a polyno-

mial function of the board size. Typically, bounded games are nonloopy while

unbounded games are loopy.) These games have the expected complexities:

one-player bounded games are NP-complete; one-player unbounded games and

two-player bounded games are PSPACE-complete; and two-player unbounded

games are EXPTIME-complete.

What makes Constraint Logic specially suited for game and puzzle reductions

is that the problems are already in form similar to many games. In particular, the

fact that the games are played on planar graphs means that the reduction does

not usually need a crossover gadget, whereas historically crossover gadgets have

often been the complex crux of a game hardness proof.

Historically, Constraint Logic arose as a simplification of the “Generalized

Rush-Hour Logic” of Flake and Baum [FB02]. The resulting one-player un-

bounded setting, called Nondeterministic Constraint Logic [HD02; HD05], was

later generalized to other game categories [Hea06b; DH08].

4. Algorithms for two-player games

Many bounded-length two-player games are PSPACE-complete. This is fairly

natural because games are closely related to Boolean expressions with alternat-

ing quantifiers (for which deciding satisfiability is PSPACE-complete): there

exists a move for Left such that, for all moves for Right, there exists another

move for Left, etc. A PSPACE-completeness result has two consequences. First,
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