Applied Quantum Mechanics, Second Edition

Electrical and mechanical engineers, materials scientists and applied physicists will find Levi's uniquely practical explanation of quantum mechanics invaluable. This updated and expanded edition of the bestselling original text now covers quantization of angular momentum and quantum communication, and problems and additional references are included. Using real-world engineering examples to engage the reader, the author makes quantum mechanics accessible and relevant to the engineering student. Numerous illustrations, exercises, worked examples and problems are included; MATLAB[®] source code to support the text is available from www.cambridge.org/9780521860963.

A. F. J. LEVI is Professor of Electrical Engineering and of Physics and Astronomy at the University of Southern California. He joined USC in 1993 after working for 10 years at AT & T Bell Laboratories, New Jersey. He invented hot electron spectroscopy, discovered ballistic electron transport in transistors, created the first microdisk laser, and carried out groundbreaking work in parallel fiber optic interconnect components in computer and switching systems. His current research interests include scaling of ultra-fast electronic and photonic devices, system-level integration of advanced optoelectronic technologies, manufacturing at the nanoscale, and the subject of Adaptive Quantum Design.

Cambridge University Press 0521860962 - Applied Quantum Mechanics, Second Edition A. F. J. Levi Frontmatter <u>More information</u>

Applied Quantum Mechanics Second Edition

A. F. J. Levi

© Cambridge University Press

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521860963

First edition © A. F. J. Levi 2003 Second edition © Cambridge University Press 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003 Second edition published 2006

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-86096-3 hardback ISBN-10 0-521-86096-2 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 0521860962 - Applied Quantum Mechanics, Second Edition A. F. J. Levi Frontmatter More information

> Dass ich erkenne, was die Welt Im Innersten zusammenhält

> > Goethe (Faust, I.382–3)

Contents

Pr	eface	to the	first edition	<i>page</i> xiii	
Pr	Preface to the second edition			XV	
MA	ATLA	B [®] pro	grams	xvi	
1	Intr	Introduction			
	1.1	Motiv	ation	1	
	1.2	Classi	cal mechanics	4	
		1.2.1	Introduction	4	
		1.2.2	The one-dimensional simple harmonic oscillator	7	
		1.2.3	Harmonic oscillation of a diatomic molecule	10	
		1.2.4	The monatomic linear chain	13	
		1.2.5	The diatomic linear chain	15	
	1.3	Classi	cal electromagnetism	18	
		1.3.1	Electrostatics	18	
		1.3.2	Electrodynamics	24	
	1.4	Exam	ple exercises	39	
	1.5	Proble	ems	53	
2	Точ				
	100	vard d	uantum mechanics	57	
_	2.1	vara q Introd	uantum mechanics	57 57	
-	2.1	Introd 2.1.1	uantum mechanics luction Diffraction and interference of light	57 57 58	
-	2.1	Introd 2.1.1 2.1.2	Ution Diffraction and interference of light Black-body radiation and evidence for quantization of light	57 57 58 62	
_	2.1	Introd 2.1.1 2.1.2 2.1.3	Ution Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle	57 57 58 62 64	
-	2.1	Introd 2.1.1 2.1.2 2.1.3 2.1.4	uantum mechanics luction Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle Secure quantum communication	57 57 58 62 64 66	
_	2.1	Introd 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	luction Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle Secure quantum communication The link between quantization of photons and other particles	57 57 58 62 64 66 70	
	2.1	Introd 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6	luction Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle Secure quantum communication The link between quantization of photons and other particles Diffraction and interference of electrons	57 57 58 62 64 66 70 71	
	2.1	Introd 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7	luction Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle Secure quantum communication The link between quantization of photons and other particles Diffraction and interference of electrons When is a particle a wave?	57 57 58 62 64 66 70 71 72	
	2.1	Introd 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 The S	Juction Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle Secure quantum communication The link between quantization of photons and other particles Diffraction and interference of electrons When is a particle a wave? chrödinger wave equation	57 57 58 62 64 66 70 71 72 73	
	2.1 2.2	Introd 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 The S 2.2.1	luction Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle Secure quantum communication The link between quantization of photons and other particles Diffraction and interference of electrons When is a particle a wave? chrödinger wave equation The wave function description of an electron in free space	57 58 62 64 66 70 71 72 73 79	
	2.1	Introd 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 The S 2.2.1 2.2.2	luction Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle Secure quantum communication The link between quantization of photons and other particles Diffraction and interference of electrons When is a particle a wave? chrödinger wave equation The wave function description of an electron in free space The electron wave packet and dispersion	57 58 62 64 66 70 71 72 73 79 80	
	2.1	Introd 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 The S 2.2.1 2.2.2 2.2.3	luction Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle Secure quantum communication The link between quantization of photons and other particles Diffraction and interference of electrons When is a particle a wave? chrödinger wave equation The wave function description of an electron in free space The electron wave packet and dispersion The hydrogen atom	57 58 62 64 66 70 71 72 73 79 80 83	
	2.1	Introd 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 The S 2.2.1 2.2.2 2.2.3 2.2.4	luction Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle Secure quantum communication The link between quantization of photons and other particles Diffraction and interference of electrons When is a particle a wave? chrödinger wave equation The wave function description of an electron in free space The electron wave packet and dispersion The hydrogen atom Periodic table of elements	57 58 62 64 66 70 71 72 73 79 80 83 89	
	2.1	Introd 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 The S 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	luction Diffraction and interference of light Black-body radiation and evidence for quantization of light Photoelectric effect and the photon particle Secure quantum communication The link between quantization of photons and other particles Diffraction and interference of electrons When is a particle a wave? chrödinger wave equation The wave function description of an electron in free space The electron wave packet and dispersion The hydrogen atom Periodic table of elements Crystal structure	57 58 62 64 66 70 71 72 73 79 80 83 89 93	

	2.3	Exam	ple exercises	103
	2.4	Proble	ems	114
3	Usin	g the \$	Schrödinger wave equation	117
	3.1	Introd	uction	117
		3.1.1	The effect of discontinuity in the wave function and its slope	118
	3.2	Wave	function normalization and completeness	121
	3.3	Invers	ion symmetry in the potential	122
		3.3.1	One-dimensional rectangular potential well with infinite	
			barrier energy	123
	3.4	Nume	rical solution of the Schrödinger equation	126
	3.5	Curren	nt flow	128
		3.5.1	Current in a rectangular potential well with infinite barrier	
			energy	129
		3.5.2	Current flow due to a traveling wave	131
	3.6	Degen	neracy as a consequence of symmetry	131
		3.6.1	Bound states in three dimensions and degeneracy of eigenvalues	131
	3.7	Symm	netric finite-barrier potential	133
		3.7.1	Calculation of bound states in a symmetric finite-barrier	
			potential	135
	3.8	Transı	mission and reflection of unbound states	137
		3.8.1	Scattering from a potential step when $m_1 = m_2$	138
		3.8.2	Scattering from a potential step when $m_1 \neq m_2$	140
		3.8.3	Probability current density for scattering at a step	141
		3.8.4	Impedance matching for unity transmission across a	
			potential step	142
	3.9	Partic	le tunneling	145
		3.9.1	Electron tunneling limit to reduction in size of CMOS	4.40
		-	transistors	149
	3.10	The n	onequilibrium electron transistor	150
	3.11	Exam	ple exercises	155
	3.12	Proble	ems	168
4	Elec	tron pi	ropagation	171
	4.1	Introd	uction	171
	4.2	The p	ropagation matrix method	172
	4.3	Progra	am to calculate transmission probability	177
	4.4	Time-	reversal symmetry	178
	4.5	Curren	nt conservation and the propagation matrix	180
	4.6	The re	ectangular potential barrier	182
		4.6.1	Transmission probability for a rectangular potential barrier	182
		4.6.2	Transmission as a function of energy	185
		4.6.3	Transmission resonances	186
	4.7	Reson	ant tunneling	188
		4.7.1	Heterostructure bipolar transistor with resonant tunnel-barrier	190
		4.7.2	Resonant tunneling between two quantum wells	192

	4.8	The potential barrier in the delta function limit	197	
	4.9	Energy bands in a periodic potential	199	
		4.9.1 Bloch's Theorem	200	
		4.9.2 The propagation matrix applied to a periodic potential	201	
		4.9.3 The tight binding approximation	207	
		4.9.4 Crystal momentum and effective electron mass	209	
	4.10	Other engineering applications	213	
	4.11	The WKB approximation	214	
		4.11.1 Tunneling through a high-energy barrier of finite width	215	
	4.12	Example exercises	217	
	4.13	Problems	234	
5	Eige	nstates and operators	238	
	5.1	Introduction	238	
		5.1.1 The postulates of quantum mechanics	238	
	5.2	One-particle wave function space	239	
	5.3	Properties of linear operators	240	
		5.3.1 Product of operators	241	
		5.3.2 Properties of Hermitian operators	241	
		5.3.3 Normalization of eigenfunctions	243	
		5.3.4 Completeness of eigenfunctions	243	
		5.3.5 Commutator algebra	244	
	5.4	Dirac notation	245	
	5.5	Measurement of real numbers	246	
		5.5.1 Expectation value of an operator	247	
		5.5.2 Time dependence of expectation value	248	
		5.5.3 Uncertainty of expectation value	249	
		5.5.4 The generalized uncertainty relation	253	
	5.6	The no cloning theorem		
	5.7	Density of states	256	
		5.7.1 Density of electron states	256	
		5.7.2 Calculating density of states from a dispersion relation	263	
		5.7.3 Density of photon states	264	
	5.8	Example exercises	266	
	5.9	Problems	277	
6	The I	narmonic oscillator	280	
	6.1	The harmonic oscillator potential	280	
	6.2	Creation and annihilation operators	282	
		6.2.1 The ground state of the harmonic oscillator	284	
		6.2.2 Excited states of the harmonic oscillator and normalization		
		of eigenstates	287	
	6.3	The harmonic oscillator wave functions	291	
		6.3.1 The classical turning point of the harmonic oscillator	295	
	6.4	Time dependence	298	
		6.4.1 The superposition operator	300	

		6.4.2 Measurement of a superposition state	300
		6.4.3 Time dependence of creation and annihilation operators	301
	6.5	Quantization of electromagnetic fields	305
		6.5.1 Laser light	306
		6.5.2 Quantization of an electrical resonator	306
	6.6	Quantization of lattice vibrations	307
	6.7	Quantization of mechanical vibrations	308
	6.8	Example exercises	309
	6.9	Problems	323
7	Feri	nions and bosons	326
	7.1	Introduction	326
		7.1.1 The symmetry of indistinguishable particles	327
	7.2	Fermi–Dirac distribution and chemical potential	334
		7.2.1 Writing a computer program to calculate the chemical potential	337
		7.2.2 Writing a computer program to plot the Fermi–Dirac distribution	338
		7.2.3 Fermi–Dirac distribution function and thermal equilibrium	
		statistics	339
	7.3	The Bose–Einstein distribution function	342
	7.4	Example exercises	343
	7.5	Problems	351
8	Tim	e-dependent perturbation	353
	8.1	Introduction	353
		8.1.1 An abrupt change in potential	354
		8.1.2 Time-dependent change in potential	356
	8.2	First-order time-dependent perturbation	359
		8.2.1 Charged particle in a harmonic potential	360
	8.3	Fermi's golden rule	363
	8.4	Elastic scattering from ionized impurities	366
		8.4.1 The coulomb potential	369
	0.7	8.4.2 Linear screening of the coulomb potential	375
	8.5	Photon emission due to electronic transitions	384
		8.5.1 Density of optical modes in three-dimensions	384
		8.5.2 Light intensity 8.5.2 Declarge and the ten analysis of the medical equilibrium	285 295
		8.5.5 Background photon energy density at thermal equinorium	205
		8.5.4 Fermi 8 golden fulle for sumulated optical transitions 8.5.5 The Einstein <i>A</i> and <i>B</i> coefficients	205
	86	S.S.S The Emistern A and D coefficients	307
	8.7	Problems	407
0	The	somiconductor lasor	110
3	0 1	Introduction	412 412
	9.1	Spontaneous and stimulated emission	413
	1.4	9.2.1 Absorption and its relation to spontaneous emission	416
		7.2.1 Rosorption and its relation to spontaneous emission	710

	9.3	Optical transitions using Fermi's golden rule	419
		9.3.1 Optical gain in the presence of electron scattering	420
	9.4	Designing a laser diode	422
		9.4.1 The optical cavity	422
		9.4.2 Mirror loss and photon lifetime	428
		9.4.3 The Fabry–Perot laser diode	429
		9.4.4 Semiconductor laser diode rate equations	430
	9.5	Numerical method of solving rate equations	434
		9.5.1 The Runge–Kutta method	435
		9.5.2 Large-signal transient response	437
		9.5.3 Cavity formation	438
	9.6	Noise in laser diode light emission	440
	9.7	Why our model works	443
	9.8	Example exercises	443
	9.9	Problems	449
10	Time	-independent perturbation	450
	10.1	Introduction	450
	10.2	Time-independent nondegenerate perturbation	451
		10.2.1 The first-order correction	452
		10.2.2 The second-order correction	453
		10.2.3 Harmonic oscillator subject to perturbing potential in x	456
		10.2.4 Harmonic oscillator subject to perturbing potential in x^2	458
		10.2.5 Harmonic oscillator subject to perturbing potential in x^3	459
	10.3	Time-independent degenerate perturbation	461
		10.3.1 A two-fold degeneracy split by time-independent	
		perturbation	462
		10.3.2 Matrix method	462
		10.3.3 The two-dimensional harmonic oscillator subject to	
		perturbation in xy	465
		10.3.4 Perturbation of two-dimensional potential with infinite	
		barrier energy	467
	10.4	Example exercises	471
	10.5	Problems	482
11	Angı	Ilar momentum and the hydrogenic atom	485
	11.1	Angular momentum	485
		11.1.1 Classical angular momentum	485
	11.2	The angular momentum operator	487
		11.2.1 Eigenvalues of angular momentum operators \hat{L}_z and \hat{L}^2	489
		11.2.2 Geometrical representation	491
		11.2.3 Spherical coordinates and spherical harmonics	492
		11.2.4 The rigid rotator	498
	11.3	The hydrogen atom	499
		11.3.1 Eigenstates and eigenvalues of the hydrogen atom	500
		11.3.2 Hydrogenic atom wave functions	508

	11.3.3 Electromagnetic radiation	509
	11.3.4 Fine structure of the hydrogen atom and electron spin	515
11.4	Hybridization	516
11.5	Example exercises	517
11.6	Problems	529
Appendix A	Physical values	532
Appendix B	Coordinates, trigonometry, and mensuration	537
Appendix C	<i>Expansions, differentiation, integrals, and mathematical relations</i>	540
Appendix L	Matrices and determinants	546
Appendix E	Vector calculus and Maxwell's equations	548
Appendix F	The Greek alphabet	551

Index

552

Preface to the first edition

The theory of quantum mechanics forms the basis for our present understanding of physical phenomena on an atomic and sometimes macroscopic scale. Today, quantum mechanics can be applied to most fields of science. Within engineering, important subjects of practical significance include semiconductor transistors, lasers, quantum optics, and molecular devices. As technology advances, an increasing number of new electronic and opto-electronic devices will operate in ways which can only be understood using quantum mechanics. Over the next thirty years, fundamentally quantum devices such as single-electron memory cells and photonic signal processing systems may well become commonplace. Applications will emerge in any discipline that has a need to understand, control, and modify entities on an atomic scale. As nano- and atomic-scale structures become easier to manufacture, increasing numbers of individuals will need to understand quantum mechanics in order to be able to exploit these new fabrication capabilities. Hence, one intent of this book is to provide the reader with a level of understanding and insight that will enable him or her to make contributions to such future applications, whatever they may be.

The book is intended for use in a one-semester introductory course in applied quantum mechanics for engineers, material scientists, and others interested in understanding the critical role of quantum mechanics in determining the behavior of practical devices. To help maintain interest in this subject, I felt it was important to encourage the reader to solve problems and to explore the possibilities of the Schrödinger equation. To ease the way, solutions to example exercises are provided in the text, and the enclosed CD-ROM contains computer programs written in the MATLAB language that illustrate these solutions. The computer programs may be usefully exploited to explore the effects of changing parameters such as temperature, particle mass, and potential within a given problem. In addition, they may be used as a starting point in the development of designs for quantum mechanical devices.

The structure and content of this book are influenced by experience teaching the subject. Surprisingly, existing texts do not seem to address the interests or build on the computing skills of today's students. This book is designed to better match such student needs.

Some material in the book is of a review nature, and some material is merely an introduction to subjects that will undoubtedly be explored in depth by those interested in pursuing more advanced topics. The majority of the text, however, is an essentially self-contained study of quantum mechanics for electronic and opto-electronic applications.

PREFACE TO THE FIRST EDITION

There are many important connections between quantum mechanics and classical mechanics and electromagnetism. For this and other reasons, Chapter 1 is devoted to a review of classical concepts. This establishes a point of view with which the predictions of quantum mechanics can be compared. In a classroom situation it is also a convenient way in which to establish a uniform minimum knowledge base. In Chapter 2 the Schrödinger wave equation is introduced and used to motivate qualitative descriptions of atoms, semiconductor crystals, and a heterostructure diode. Chapter 3 develops the more systematic use of the one-dimensional Schrödinger equation to describe a particle in simple potentials. It is in this chapter that the quantum mechanical phenomenon of tunneling is introduced. Chapter 4 is devoted to developing and using the propagation matrix method to calculate electron scattering from a one-dimensional potential of arbitrary shape. Applications include resonant electron tunneling and the Kronig-Penney model of a periodic crystal potential. The generality of the method is emphasized by applying it to light scattering from a dielectric discontinuity. Chapter 5 introduces some related mathematics, the generalized uncertainty relation, and the concept of density of states. Following this, the quantization of conductance is introduced. The harmonic oscillator is discussed in Chapter 6 using the creation and annihilation operators. Chapter 7 deals with fermion and boson distribution functions. This chapter shows how to numerically calculate the chemical potential for a multi-electron system. Chapter 8 introduces and then applies time-dependent perturbation theory to ionized impurity scattering in a semiconductor and spontaneous light-emission from an atom. The semiconductor laser diode is described in Chapter 9. Finally, Chapter 10 discusses the (still useful) time-independent perturbation theory.

Throughout this book, I have tried to make applications to systems of practical importance the main focus and motivation for the reader. Applications have been chosen because of their dominant roles in today's technologies. Understanding is, after all, only useful if it can be applied.

A.F.J. Levi 2003

Preface to the second edition

Following the remarkable success of the first edition and not wanting to give up on a good thing, the second edition of this book continues to focus on three main themes: practicing manipulation of equations and analytic problem solving in quantum mechanics, utilizing the availability of modern compute power to numerically solve problems, and developing an intuition for applications of quantum mechanics. Of course there are many books which address the first of the three themes. However, the aim here is to go beyond that which is readily available and provide the reader with a richer experience of the possibilities of the Schrödinger equation and quantum phenomena.

Changes in the second edition include the addition of problems to each chapter. These also appear on the Cambridge University Press website. To make space for these problems and other additions, previously printed listing of MATLAB code has been removed from the text. Chapter 1 now has a section on harmonic oscillation of a diatomic molecule. Chapter 2 has a new section on quantum communication. In Chapter 3 the discussion of numerical solutions to the Schrödinger now includes periodic boundary conditions. The tight binding model of band structure has been added to Chapter 4 and the numerical evaluation of density of states from dispersion relation has been added to Chapter 5. The discussion of occupation number representation for electrons has been extended in Chapter 7. Chapter 11 is a new chapter in which quantization of angular momentum and the hydrogenic atom are introduced.

Cambridge University Press has a website with supporting material for both students and teachers who use the book. This includes MATLAB code used to create figures and solutions to exercises. The website is: http://www.cambrige.org/9780521860963

A.F.J. Levi 2006

MATLAB[®] programs

The computer requirements for the MATLAB¹ language are an IBM or 100% compatible system equipped with Intel 486, Pentium, Pentium Pro, Pentium4 processor or equivalent. There should be an 8-bit or better graphics adapter and display, a minimum of 32 MB RAM, and at least 50 MB disk space. The operating system should be Windows 95, NT4, Windows 2000, or Windows XP.

If you have not already installed the MATLAB language on your computer, you will need to purchase a copy and do so. MATLAB is available from MathWorks (http://www.mathworks.com/).

After verifying correct installation of MATLAB, download the directory AppliedQMmatlab from www.cambridge.org/9780521860963 and copy to a convenient location in your computer user directory.

Launch MATLAB using the icon on the desktop or from the start menu. The MATLAB command window will appear on your computer screen. From the MATLAB command window use the path browser to set the path to the location of the AppliedQMmatlab directory. Type the name of the file you wish to execute in the MATLAB command window (do not include the ".m" extension). Press the enter key on the keyboard to run the program.

You will find that some programs prompt for input from the keyboard. Most programs display results graphically with intermediate results displayed in the MATLAB command window.

To edit values in a program or to edit the program itself double-click on the file name to open the file editor.

You should note that the computer programs in the AppliedQMmatlab directory are not optimized. They are written in a very simple way to minimize any possible confusion or sources of error. The intent is that these programs be used as an aid to the study of applied quantum mechanics. When required, integration is performed explicitly, and in the simplest way possible. However, for exercises involving matrix diagonalization use is made of special MATLAB functions.

Some programs make use of the functions chempot.m, fermi.m, mu.m, runge4.m, and solve_schM.m, and Chapt9Exercise5.m reads data from the datainL1.txt data input file.

1. MATLAB is a registered trademark of MathWorks, Inc.