Our ability to speak, write, understand speech, and read is critical to our ability to function in today’s society. As such, psycholinguistics, or the study of how humans learn and use language, is a central topic in cognitive science. This comprehensive handbook is a collection of chapters written not by practitioners in the field, who can summarize the work going on around them, but by trailblazers from a wide array of subfields, who have been shaping the field of psycholinguistics over the last decade. Some topics discussed include how children learn language, how average adults understand and produce language, how language is represented in the brain, how brain-damaged individuals perform in terms of their language abilities, and computer-based models of language and meaning. This is required reading for advanced researchers, graduate students, and upper-level undergraduates interested in the recent developments and the future of psycholinguistics.

Michael J. Spivey was on the faculty of Cornell University for twelve years before moving to the cognitive and information sciences unit at the University of California, Merced, in 2008. His research uses dense-sampling methods (such as eyetracking and reach tracking) to explore the real-time interaction between language and vision. He has published in a variety of top-tier journals, including Science, Cognitive Science, Trends in Cognitive Sciences, Psychological Science, and Proceedings of the National Academy of Sciences. Spivey is the recipient of Sigma Xi's William Procter Prize for Scientific Achievement and multiple teaching awards from Cornell University. The dynamical cognition framework that guides his research is described in his book The Continuity of Mind (2007).

Ken McRae has been at the University of Western Ontario since 1993, where he has been studying language and concepts. He has published articles regarding sentence processing and semantic memory from numerous perspectives, including modality-specific representations, the roles of statistical correlations and causal relations in object concepts, category-specific semantic deficits, and the integration of meaning and structure in sentence comprehension. He has also published a number of computational models of these important human abilities. McRae has published in journals such as Cognition, Journal of Memory and Language, Journal of Experimental Psychology, Cognitive Science, and Neuropsychologia.

Marc F. Joanisse has been at the University of Western Ontario since 2000, studying the cognitive and brain bases of spoken and written language. Work in his laboratory emphasizes the importance of studying multiple aspects of language ability, in a variety of populations, using a range of techniques. His research spans a range of topics encompassing speech perception, spoken word recognition, and reading and grammar abilities in adults and children, using everything from traditional behavioral techniques to eyetracking, event-related potentials, and fMRI. In addition, he has published articles in the field of connectionist modeling of language processing, aphasia following brain injury, and language disorders in children. He has published in a wide range of journals, including the Proceedings of the National Academy of Sciences, Journal of Cognitive Neuroscience, Cerebral Cortex, NeuroImage, Journal of Memory and Language, and Journal of Experimental Psychology: Learning Memory and Cognition.
Shortly after completing her chapter, Rebecca Sandak passed away in an auto accident that also took the life of her husband, Sam. As is evident in her chapter, Rebecca was a promising young scholar who made a number of important contributions to our understanding of the neural bases of skilled reading and dyslexia. We are sad to have lost her, but are proud to include her contribution in this handbook. The Cambridge Handbook of Psycholinguistics is dedicated to her.
Contents

List of Contributors
Preface by Michael J. Spivey, Ken McRae, and Marc F. Joanisse

SECTION 1: SPEECH PERCEPTION

1. Speech Perception
 Carol A. Fowler and James S. Magnuson

2. Neural Bases of Speech Perception – Phonology, Streams, and Auditory Word Forms
 Sophie Scott

3. Learning the Sounds of Language
 Jenny R. Saffran and Sarah D. Sahni

SECTION 2: SPOKEN WORD RECOGNITION

4. Current Directions in Research in Spoken Word Recognition
 Arthur G. Samuel and Meghan Sumner

5. Computational Models of Spoken Word Recognition
 James S. Magnuson, Daniel Mirman, and Harlan D. Harris

6. Finding the Words: How Young Children Develop Skill in Interpreting Spoken Language
 Anne Fernald and Michael Frank

7. Event-Related Potentials and Magnetic Fields Associated with Spoken Word Recognition
 Randy L. Newman, Kelly Forbes, and John F. Connolly
Section 3: Written Word Recognition

8. Visual Word Recognition in Skilled Adult Readers
 Michael J. Cortese and David A. Balota
 Page 159

9. Computational Models of Reading: Connectionist and Dual-Route Approaches
 Mark S. Seidenberg
 Page 186

10. Decoding, Orthographic Learning, and the Development of Visual Word Recognition
 Kate Nation
 Page 204

11. How Does the Brain Read Words?
 Page 218

Section 4: Semantic Memory

12. The Human Conceptual System
 Lawrence W. Barsalou
 Page 239

13. Computational Models of Semantic Memory
 George S. Cree and Blair C. Armstrong
 Page 259

14. Developing Categories and Concepts
 Linda B. Smith and Eliana Colunga
 Page 283

Section 5: Morphological Processing

15. Derivational Morphology and Skilled Reading: An Empirical Overview
 Kevin Diependaele, Jonathan Grainger, and Dominiek Sandra
 Page 311

16. The Neural Basis of Morphology: A Tale of Two Mechanisms?
 Anna Woolams and Karalyn Patterson
 Page 333

Section 6: Sentence Comprehension

17. Individual Differences in Sentence Processing
 Thomas A. Farmer, Jennifer B. Misyak, and Morten H. Christiansen
 Page 353

18. The Neurobiology of Sentence Comprehension
 Lee Osterhout, Albert Kim, and Gina R. Kuperberg
 Page 365

19. Computational and Corpus Models of Human Sentence Comprehension
 Douglas Roland and Mary Hare
 Page 390

Section 7: Sentence Production

20. Research in Language Production
 Zenzi M. Griffin and Christopher M. Crew
 Page 409

21. Language Production: Computational Models
 Gary S. Dell and Joana Cholin
 Page 426

22. Language Production: Patient and Imaging Research
 Gabriella Vigliocco, Daniel Tranel, and Judit Druks
 Page 443
CONTENTS

SECTION 8: FIGURATIVE LANGUAGE

23. Figurative Language: Normal Adult Cognitive Research
 Raymond W. Gibbs, Jr., Nicole L. Wilson, and Gregory A. Bryant
 465

24. Computational Approaches to Figurative Language
 Birte Loenneker-Rodman and Srini Narayanan
 485

25. The Development of Figurative Language
 Cristina Cacciari and Roberto Padovani
 505

26. Cognitive Neuroscience of Figurative Language
 Seana Coulson
 523

SECTION 9: DISCOURSE AND CONVERSATION

27. Spoken Discourse and Its Emergence
 Herbert H. Clark
 541

28. Computational Modeling of Discourse and Conversation
 Arthur C. Graesser, Danielle S. MacNamara, and Vasile Rus
 558

29. Children, Conversation, and Acquisition
 Eve V. Clark
 573

30. The Electrophysiology of Discourse and Conversation
 Jos J. A. Van Berkum
 589

SECTION 10: LANGUAGE AND THOUGHT

31. How the Languages We Speak Shape the Ways We Think: The FAQs
 Lera Boroditsky
 615

32. Computational Approaches to Language and Thought
 Terry Regier
 633

33. Language and Cognition in Development
 Stella Christie and Dedre Gentner
 653

34. Language, Thought, and … Brain?
 Monica Gonzalez-Marquez
 674

Index
693
Contributors

BLAIR C. ARMSTRONG
Department of Psychology
Carnegie Mellon University

Cristina Cacciari
Dipartimento di Scienze Biomediche
University of Modena and Reggio Emilia

DAVID A. BALOTA
Department of Psychology
Washington University
in St. Louis

JOANA CHOLIN
Basque Center on Cognition, Brain and Language

LAWRENCE W. BARSA LOU
Department of Psychology
Emory University

MORTEN H. CHRISTIANSEN
Psychology Department
Cornell University

JOS J. A. VAN BERKUM
Neurobiology of Language Department
Max Planck Institute for Psycholinguistics

STELLA CHRISTIE
Department of Psychology
University of British Columbia

LERA BORODITSKY
Department of Psychology
Stanford University

EVE V. CLARK
Department of Linguistics
Stanford University

GREGORY A. BRYANT
Department of Communication Studies
Center for Behavior, Evolution, and Culture
University of California, Los Angeles

HERBERT H. CLARK
Department of Psychology
Stanford University

ELIANA COLUNGA
Department of Psychology
University of Colorado, Boulder
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>John F. Connolly</td>
<td>Department of Linguistics and Languages, McMaster University</td>
</tr>
<tr>
<td>Michael J. Cortese</td>
<td>Department of Psychology, University of Nebraska at Omaha</td>
</tr>
<tr>
<td>Seana Coulson</td>
<td>Department of Cognitive Science, University of California, San Diego</td>
</tr>
<tr>
<td>George S. Cree</td>
<td>Department of Psychology, University of Toronto, Scarborough</td>
</tr>
<tr>
<td>Christopher M. Crew</td>
<td>Department of Psychology, Columbia University</td>
</tr>
<tr>
<td>Gary S. Dell</td>
<td>Department of Psychology, University of Illinois</td>
</tr>
<tr>
<td>Kevin Diependael</td>
<td>Department of Experimental Psychology, University of Gent</td>
</tr>
<tr>
<td>Judit Drus</td>
<td>Department of Human Communication, University College London</td>
</tr>
<tr>
<td>Thomas A. Farmer</td>
<td>Department of Psychology, The University of Iowa</td>
</tr>
<tr>
<td>Anne Fernald</td>
<td>Center for Infant Studies, Stanford University</td>
</tr>
<tr>
<td>Kelly Forbes</td>
<td>CAE Professional Services Canada</td>
</tr>
<tr>
<td>Carol A. Fowler</td>
<td>Haskins Laboratories</td>
</tr>
<tr>
<td>Michael Frank</td>
<td>Department of Psychology, Stanford University</td>
</tr>
<tr>
<td>Stephen J. Frost</td>
<td>Haskins Laboratories</td>
</tr>
<tr>
<td>Dedre Gentner</td>
<td>Department of Psychology, Northwestern University</td>
</tr>
<tr>
<td>Raymond W. Gibbs, Jr.</td>
<td>Psychology Department, University of California, Santa Cruz</td>
</tr>
<tr>
<td>Monica Gonzalez-Marquez</td>
<td>Department of Psychology, Cornell University</td>
</tr>
<tr>
<td>Arthur C. Graesser</td>
<td>The Institute for Intelligent Systems, FedEx Institute of Technology</td>
</tr>
<tr>
<td>Jonathan Grainger</td>
<td>National Center for Scientific Research, Université d’Aix-Marseille</td>
</tr>
<tr>
<td>Zenzi M. Griffin</td>
<td>Department of Psychology, University of Texas at Austin</td>
</tr>
<tr>
<td>Mary Hare</td>
<td>Department of Psychology, Bowling Green State University</td>
</tr>
<tr>
<td>Harlan D. Harris</td>
<td>Department of Psychology, New York University</td>
</tr>
<tr>
<td>Marc F. Joanisse</td>
<td>Department of Psychology, Social Science Centre, University of Western Ontario</td>
</tr>
<tr>
<td>Leonard Katz</td>
<td>Department of Psychology, University of Connecticut</td>
</tr>
<tr>
<td>Albert Kim</td>
<td>Department of Psychology and Neuroscience, University of Colorado at Boulder</td>
</tr>
<tr>
<td>Gina R. Kuperberg</td>
<td>Department of Psychology, Tufts University</td>
</tr>
<tr>
<td>Nicole Landi</td>
<td>Haskins Laboratories</td>
</tr>
<tr>
<td>LIST OF CONTRIBUTORS</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>BIRTE LOENNEKER-RODMAN</td>
<td>TERRY REGIER</td>
</tr>
<tr>
<td>International Computer Science Institute</td>
<td>Department of Linguistics</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>DANIELLE S. MACNAMARA</td>
<td>DOUGLAS ROLAND</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Department of Linguistics</td>
</tr>
<tr>
<td>Arizona State University</td>
<td>University at Buffalo, The State University of New York</td>
</tr>
<tr>
<td>JAMES S. MAGNUSON</td>
<td>JAY G. RUECKL</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>University of Connecticut</td>
<td>University of Connecticut</td>
</tr>
<tr>
<td>KEN McRAE</td>
<td>VASILE RUS</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Department of Computer Science</td>
</tr>
<tr>
<td>Social Science Centre</td>
<td>Memphis University</td>
</tr>
<tr>
<td>University of Western Ontario</td>
<td></td>
</tr>
<tr>
<td>W. EINAR MENCL</td>
<td>JENNY R. SAFFRAN</td>
</tr>
<tr>
<td>Haskins Laboratories</td>
<td>Psychology Department</td>
</tr>
<tr>
<td></td>
<td>University of Wisconsin-Madison</td>
</tr>
<tr>
<td>DANIEL MIRMAN</td>
<td>ARThUR G. SAMUEL</td>
</tr>
<tr>
<td>Moss Rehabilitation Research Institute</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td>Stony Brook University and Basque Center on Cognition Brain and Language</td>
</tr>
<tr>
<td>JENNIFER B. Misyak</td>
<td>Sarah D. Sahni</td>
</tr>
<tr>
<td>Psychology Department</td>
<td>Psychology Department</td>
</tr>
<tr>
<td>Cornell University</td>
<td>University of Wisconsin-Madison</td>
</tr>
<tr>
<td>SRINI NARAYANAN</td>
<td>REBECCA SANDAK</td>
</tr>
<tr>
<td>International Computer Science Institute</td>
<td>formerly of Haskins Laboratories</td>
</tr>
<tr>
<td>Kate Nation</td>
<td>Dominiek Sandra</td>
</tr>
<tr>
<td>Language and Cognitive Development Group</td>
<td>Center for Psycholinguistics</td>
</tr>
<tr>
<td>Department of Experimental Psychology</td>
<td>University of Antwerp</td>
</tr>
<tr>
<td>St John's College, Oxford</td>
<td></td>
</tr>
<tr>
<td>Randy L. Newman</td>
<td>SOphIE SCOTT</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Institute of Cognitive Neuroscience</td>
</tr>
<tr>
<td>Acadia University</td>
<td>University College London</td>
</tr>
<tr>
<td>Lee OSTERHOUT</td>
<td>Mark S. Seidenberg</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>University of Washington</td>
<td>University of Wisconsin-Madison</td>
</tr>
<tr>
<td>Roberto Padovani</td>
<td>LINDA B. SMITH</td>
</tr>
<tr>
<td>Azienda USL di Modena</td>
<td>Department of Psychological and Brain Sciences</td>
</tr>
<tr>
<td></td>
<td>Indiana University</td>
</tr>
<tr>
<td>KARALYN PATTERSON</td>
<td></td>
</tr>
<tr>
<td>MRC Cognition and Brain Sciences Unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>KENNETH R. PUGH</td>
<td></td>
</tr>
<tr>
<td>Haskins Laboratories</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF CONTRIBUTORS

MICHAEL J. SPIVEY
Cognitive and Information Sciences
University of California, Merced

GABRIELLA VIGLIOCCO
Centre for Deafness, Cognition and Language
University College London

MEGHAN SUMNER
Department of Linguistics
Stanford University

NICOLE L. WILSON
Pearson Knowledge Technologies

DANIEL TRANEL
Department of Neurology
University of Iowa Hospitals and Clinics

ANNA WOOLLAMS
Neuroscience and Aphasia Research Unit (NARU)

University of Manchester
Preface

Michael J. Spivey, Ken McRae, and Marc F. Joanisse

In previous years, there have been other handbooks of psycholinguistics, however none of them has been as expansive and comprehensive as this one. With the unusually large number of highly influential authors in this volume, it took a fair bit of time to herd all of these chapters together. But it was definitely worth the wait. We are extremely grateful to Janet Aucoin for assistance in compiling this volume.

The Cambridge Handbook of Psycholinguistics is written not by practitioners in the field who can summarize the work going on around them. It is written by the trailblazers themselves, from a wide array of subfields, who have been forming the field of psycholinguistics and are responsible for its current shape. In addition to its emphasis on comprehensiveness, this handbook displays a commitment to identifying the important changes taking place in various areas of psycholinguistics. In some areas of the cognitive and neural sciences, it could perhaps be argued that the past dozen years have not quite seen enough change in theory and methods to genuinely warrant a new handbook. However, it is abundantly clear that psycholinguistics has seen more than its usual share of large and small paradigm shifts in just these past dozen years or so – both in the form of transitions of dominance between competing theories and in the form of methodological developments that have changed the way these theories are tested. Thus the field of psycholinguistics unmistakably needs a comprehensive handbook that updates the scientific community (researchers, instructors, and graduate students) on the radically altered empirical and theoretical landscape that has developed.

Several subfields have watched exciting new conceptual developments and previously subordinate theories come to the forefront. For example, the area of language development, from speech perception to sentence comprehension, has experienced a renewed emphasis on the role of the statistical structure in a language learner’s input (e.g., Gerken, 2004; Gomez, 2002; Saffran, 2003; Saffran, Aslin, and Newport, 1996). The subfield of sentence processing has been undergoing a shift – already detectable in the textbooks – from a preponderance of stage-based processing accounts to a
largely dynamic and interactive (neural network-inspired) theoretical framework (e.g., MacDonald, Pearlman, and Seidenberg, 1994; Spivey et al., 2002; Tabor and Hutchins, 2004). Furthermore, developmental, adult, modeling, patient, and neurological research is considerably more integrated than was the case ten years ago. The debate over how to represent the morphology of regular and irregular past tenses in English returned with a new vigor (e.g., Joanisse, 2004; Marchman, Plunkett, and Goodman, 2003; Ullman, 2001). The embodied meanings of words, as opposed to amodal symbolic representations, is becoming a staple of contemporary literature reviews of semantic memory (e.g., Barsalou, 1999; Glenberg, 1997; Richardson et al., 2003). The field of semantic memory has undergone huge changes: the shift from amodal to perceptually based and event-based representations (Barsalou, 1999; Glenberg, 1997), the vastly increased role of patient and neuroimaging research (Martin and Caramazza, 2003), the centrality of connectionist modeling (Plaut and Shallice, 1993), and the advent of corpus-based approaches to word meaning (Landauer and Dumais, 1997). The list could go on and on—and in this handbook, it does.

Many of the recent sways in these theoretical battles have been made possible by major advances in the methods being used by the field in just the past several years. For example, continued development of connectionist modeling techniques has allowed more explicit specification of theories and accommodated new data in the areas of sentence processing (e.g., MacDonald and Christiansen, 2002; McRae, Spivey-Knowlton, and Tanenhaus, 1998) word meaning (McRae, de Sa, and Seidenberg, 1997), language acquisition (e.g., Rohde and Plaut, 1999), and language disorders (e.g., Joanisse and Seidenberg, 2003), to name just a few. Moreover, functional magnetic resonance imaging has, along with magnetoencephalography and electroencephalography, produced reams of important new neuroimaging results in many areas of language research (e.g., Connolly and D’Arcy, 2000; Martin and Caramazza, 2003; Osterhout and Nicol, 1999; Pulvermüller, Assadollahi, and Elbert, 2001; Scott and Wise, 2004) that alone could justify a new handbook. And head-mounted eye-tracking—providing the first noninterruptive, real-time measure of spoken language comprehension and production in rich situational contexts (e.g., Griffin and Bock, 2000; Tanenhaus et al., 1995)—has been revealing new discoveries in speech perception, spoken word recognition, sentence processing, language production, figurative language, and even naturalistic conversation.

Handbook Structure

The Cambridge Handbook of Psycholinguistics provides relatively short reports on the psycholinguistic literature in a wide variety of subfields, written by the experts who made those subfields what they are, with discussions of these many recent theoretical and methodological developments. The Handbook is divided into ten sections: Speech Perception, Spoken Word Recognition, Written Word Recognition, Semantic Memory, Morphological Processing, Sentence Comprehension, Sentence Production, Figurative Language, Discourse and Conversation, and Language and Thought, in that order. To ensure a wide representation of empirical methodologies and conceptual issues, and equally important, to highlight the theoretical and methodological advances of the past dozen years or so, each section has chapters that together cover adult behavioral measures, developmental research, computational modeling, and patient and neuroimaging research. By having these four perspectives emphasized in each of the ten sections, not only will current areas of research that strongly integrate those four perspectives receive proper treatment (e.g., spoken and written word recognition, semantic memory, sentence processing), but younger areas of experimental psycholinguistic study (e.g., figurative language, language and thought, discourse and conversation) will be encouraged to strengthen all four of those perspectives in their future
research. Thus, in addition to summarizing the state of the art of psycholinguistics, it is our hope that this handbook can bolster the metatheoretical richness and methodological diversity of the future of psycholinguistics.

The justification for the ten sections we have chosen is twofold. First, we wish this handbook to be representative of the entire field, so it includes chapters on all active areas of contemporary psycholinguistic research. Second, for those portions of certain fields that have become sufficiently active to warrant being identified as their own subfield, we have given them their own section. Nonetheless, it is neither possible nor desirable to have in-depth chapters on every subfield. Therefore, the reader may indeed find sections that could have been subdivided into two sections, and future editions of this handbook could perhaps pursue that finer-grain specification. Later in this preface we provide brief summaries of these sections to help guide the reader.

Speech perception

With chapters from major contributors to this field such as Carol A. Fowler, Sophie Scott, Jenny R. Saffran, and their colleagues, this section focuses on how individuals perceive units of speech such as phonemes. The hot topic of speech perception very much remains what it has been for decades – the question of whether “speech is special.” That is, does speech represent a unique mode of perception distinct from other types of auditory perception? This is a contentious issue, and we have selected authors who bring forward a range of perspectives on the topic, including exemplar- and prototype-based models of speech and the revised motor theory of speech perception. This section also addresses the role of statistical learning in speech perception, especially as it relates to suprasegmental phenomena such as word segmentation.

Spoken word recognition

With noticeably less emphasis on the level of acoustic properties and phonological features, and significantly more emphasis on interactions between words, the literature on spoken word recognition is sufficiently distinct from the literature on speech perception – and certainly large enough on its own – to warrant its own section in this handbook. Arthur G. Samuel, James S. Magnuson, Anne Fernald, John F. Connolly, and their colleagues contribute four chapters discussing recent theoretical shifts in the area of spoken word recognition that have been instigated by recent research, including novel eyetracking methods and numerous improvements and comparisons of computational models.

Written word recognition

In many ways this area of research captures what we see as a major trend in psycholinguistics: the move toward using behavioral data to test the quantitative predictions of implemented models. In the past decade we have seen the Seidenberg and McClelland model emerge as a key theory of visual word recognition, though the classical dual-route theory also remains popular. We have selected authors who are conversant in this important theoretical debate (e.g., David A. Balota, Mark S. Seidenberg, Kate Nation, and Rebecca Sandak) in order to best represent the state of the art. A second theme in this section concerns the role of phonology in reading acquisition and disorders (including dyslexia). This is a hot topic addressed not only in the developmental chapter, but also in the neuroimaging and computational modeling chapters.

Semantic memory

The area of semantic memory has changed drastically over the past ten years and become significantly coextensive with psycholinguistics. These three chapters by Lawrence W. Barsalou, George S. Cree, Linda B. Smith, and their colleagues highlight those changes, such as the advances toward perceptually based rather than amodal representations; the (competing) theory of corpus-based representations; the
Preface

central roles that connectionist modeling, neuroimaging, and patient research play; and the always present and increasing role of the study of the development of concepts and word meaning. This section makes apparent the fact that these four approaches are better integrated than ever, which is, in itself, a very exciting development.

Morphological processing

The debate between single- and dual-mechanism models of past tense processing has reemerged as a major theme in psycholinguistics. In addition to new approaches to modeling morphology, evidence has come from the neuropsychology literature, including work with aphasic patients and neuroimaging studies. That said, these chapters by Jonathan Grainger, Karalyn Patterson, and their colleagues go well beyond past tense, focusing on issues related to how morphology interacts with visual word recognition, how children use different types of evidence to learn morphological patterns, and differences between inflectional and derivational morphology.

Sentence comprehension

Sentence comprehension is a key area where psycholinguists and theoretical linguists have shared structural formalisms and experimental methods to study language processing. The field of sentence comprehension has undergone substantial methodological and theoretical changes over the past dozen years, as documented in these chapters by Lee Osterhout and colleagues, Morten H. Christiansen and colleagues, and Douglas Roland and Mary Hare. These include the introduction of implemented computational models and a plethora of evidence supporting constraint-based models. These advances (as well as the visual world paradigm in which auditory instructions are interpreted in the context of a visual display) have played powerful roles in changing both theoretical and empirical work. Analyses of large-scale electronic corpora are now a central part of sentence comprehension research. Finally, neuroimaging research has grown rapidly in this area, as it seems to have across many areas of psycholinguistics.

Sentence production

The raw amount of research on language production, both at the lexical level and at the sentential level, has grown substantially over the past dozen years. Invigorated by new methods such as eyetracking, neuroimaging, and improved computational models, this subfield is approaching the size and visibility of the sentence comprehension subfield. In addition to describing the state of the art of this area of research, these chapters by Zenzi M. Griffin, Gary S. Dell, Gabriella Vigliocco, and their colleagues together provide a vision for the future directions in this subfield, encouraging simultaneous attention to multiple sources of evidence.

Figurative language

Figurative language is where psycholinguists and cognitive linguists share theories and methods to understand the wide array of natural everyday language use patterns (within which nonliteral meanings are actually the norm rather than the exception). In the past dozen years, theoretical cognitive linguists (along with cognitive linguistically minded psycholinguists) have begun to integrate findings from real-time laboratory experiments (even conducting experiments themselves at times), as well as extend their theoretical treatments to explicit computational implementations, formal treatments, and neurophysiological constraints. This growing area of research, well-documented here in chapters by Raymond W. Gibbs, Jr., Srini Narayanan, Cristina Cacciari, Seana Coulson, and their colleagues, holds considerable promise for offering a framework of linguistic representation and processing that treats language as an integral component of cognition in general.
Discourse and conversation

With much of its tradition in the philosophy of language (and also somewhat in artificial intelligence), psycholinguistic research on discourse and conversation has seen a resurgence of interest lately by researchers using real-time measures such as EEG and eyetracking. Computational models have also begun to figure prominently again in the description of specific conversational situations such as question answering. These four chapters, by Herbert H. Clark, Arthur C. Graesser, Danielle S. MacNamara, Eve V. Clark, and Jos J. A. Van Berkum, sample this subfield in a manner that sets the stage for the future of this area of research.

Language and thought

This area of inquiry was once all but discarded in the field of theoretical linguistics on the grounds of specific criticisms of a specific handful of linguistic analyses. However, due significantly to the recent high-profile psycholinguistic research (documented here in chapters by Lera Boroditsky, Terry Regier, Dedre Gentner, and Monica Gonzalez-Marquez), the Whorfian hypothesis – that one’s language influences how one thinks – has come again to the table of debate. Psycholinguistic methods and computational models, rather than linguistic analyses, have been producing results that strongly suggest this hypothesis still has some genuine (though perhaps limited) merit. As this field is clearly on the rise once again in psycholinguistics, this collection of chapters will help to frame the contemporary research in, as well as distinguish it from, its historical context.

Acknowledgments

Thanks to David Plaut and Jo Ziegler for helpful discussions.

References

