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Introduction

Quantum information is concerned with using the special features of quantum
physics for the processing and transmission of information. It should, however,
be clearly understood that any physical object when analyzed at a deep enough
level is a quantum object; as Rolf Landauer has succinctly stated, “A screwdriver
is a quantum object.” In fact, the conduction properties of the metal blade of a
screwdriver are ultimately due to the quantum properties of electron propagation
in a crystalline medium, while the handle is an electrical insulator because the
electrons in it are trapped in a disordered medium. It is again quantum mechanics
which permits explanation of the fact that the blade, an electrical conductor, is
also a thermal conductor, while the handle, an electrical insulator, is also a thermal
insulator. To take an example more directly related to information theory, the
behavior of the transistors etched on the chip inside your computer could not
have been imagined by Bardeen, Brattain, and Shockley in 1947 were it not for
their knowledge of quantum physics. Although your computer is not a quantum
computer, it does function according to the principles of quantum mechanics!
This quantum behavior is also a collective behavior. Let us give two examples.
First, if the value O of a bit is represented physically in a computer by an uncharged
capacitor while the value 1 is represented by the same capacitor charged, the
passage between the charged and uncharged states amounts to the displacement
of 10* to 103 electrons. Second, in a classic physics experiment, sodium vapor
is excited by an electric arc, resulting in the emission of yellow light, the well
known “yellow line of sodium.” However, it is not actually the behavior of an
individual atom that is observed, as the vapor cell typically contains 10?° atoms.
The great novelty since the early 1980s is that physicists now know how to
manipulate and observe individual quantum objects — photons, atoms, ions, and so
on — and not just the collective quantum behavior of a large number of such objects.
It is this possibility of manipulating and observing individual quantum objects
which lies at the foundation of quantum computing, as these quantum objects can
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2 Introduction

be used as the physical support for quantum bits. Let us emphasize, however,
that no new fundamental concept has been introduced since the 1930s. If the
founding fathers of quantum mechanics (Heisenberg, Schrodinger, Dirac, . . .) were
resurrected today, they would find nothing surprising in quantum information,
but they would certainly be impressed by the skills of experimentalists, who have
now learned how to perform experiments which in the past were referred to as
“gedanken experiments” or “thought experiments.”

It should also be noted that the ever-increasing miniaturization of electronics
will eventually be limited by quantum effects, which will become important at
scales of tens of nanometers. Moore’s law ! states that the number of transistors
which can be etched on a chip doubles every 18 months, leading to a doubling
of the memory size and the computational speed (amounting to a factor of 1000
every 15 years!). The extrapolation of Moore’s law to the year 2010 implies that
the characteristic dimensions of circuits on a chip will reach a scale of the order
of 50 nanometers, and somewhere below 10 nanometers (to be reached by 2020?)
the individual properties of atoms and electrons will become predominant, so that
Moore’s law may cease to be valid ten to fifteen years from now.

Let us take a very preliminary look at some characteristic features of quantum
computing. A classical bit of information takes the value O or 1. A quantum bit,
or qubit, can not only take the values 0 and 1, but also, in a sense which will be
explained in the following chapter, all intermediate values. This is a consequence
of a fundamental property of quantum states: it is possible to construct linear
superpositions of a state in which the qubit has the value 0 and of a state in which
it has the value 1.

The second property on which quantum computing is based is entanglement.
At a quantum level it can happen that two objects form a single entity, even at
arbitrarily large separation from each other. Any attempt to view this entity as
a combination of two independent objects fails, unless the possibility of signal
propagation at superluminal speeds is allowed. This conclusion follows from
the theoretical work of John Bell in 1964, inspired by the studies of Einstein,
Podolsky, and Rosen (EPR) in 1935, and from the experiments motivated by
these studies (see Section 4.5 below). As we shall see in Chapter 5, the amount
of information contained in an entangled state of N qubits grows exponentially
with N, and not linearly as in the case of classical bits.

The combination of these two properties, linear superposition and entangle-
ment, lies at the core of quantum parallelism, the possibility of performing a large
number of operations in parallel. However, the principles of quantum parallelism
differ fundamentally from those of classical parallelism. Whereas in a classical

! Moore’s law is not a law based on theory, but rather an empirical statement which has been observed to hold
over the last forty years.
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Introduction 3

computer it is always possible to know (at least in principle) what the internal
state of the computer is, such knowledge is in principle impossible in a quan-
tum computer. Quantum parallelism has led to the development of entirely new
algorithms such as the Shor algorithm for factoring large numbers into primes,
an algorithm which by its nature cannot be run on a classical computer. It is in
fact this algorithm which has stimulated the development of quantum computing
and has opened the door to a new science of algorithms.

Quantum computing opens up fascinating perspectives, but its present limita-
tions should also be emphasized. These are of two types. First, even if quantum
computers were available today, the number of algorithms of real interest is at
present very limited. However, there is nothing which prevents others from being
imagined in the future. The second type of limitation is that we do not know
if it will someday be possible to construct quantum computers large enough to
manipulate hundreds of qubits. At present, we do not know what the best phys-
ical support for qubits will be, and we know at best how to manipulate only
a few qubits (a maximum of seven; see Chapter 6). The Enemy Number One
of a quantum computer is decoherence, the interaction of qubits with the envi-
ronment which blurs the delicate linear superpositions. Decoherence introduces
errors, and ideally a quantum computer must be completely isolated from its
environment. This in practice means the isolation must be good enough that any
errors introduced can be corrected by error-correcting codes specific to qubits.

In spite of these limitations, quantum computing has become the passion of hun-
dreds of researchers around the world. This is cutting-edge research, particularly
that on the manipulation of individual quantum objects. This work, in combination
with entanglement, permits us to speak of a “new quantum revolution” which is
developing into a veritable quantum engineering. Another application might be
the building of computers designed to simulate quantum systems. And, as has
often happened in the past, such fundamental research may also result in new
applications completely different from quantum computing, applications which
we are not in a position to imagine today.
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2
What is a qubit?

2.1 The polarization of light

Our first example of a qubit will be the polarization of a photon. First we briefly
review the subject of light polarization. The polarization of light was demonstrated
for the first time by the Chevalier Malus in 1809. He observed the light of the
setting sun reflected by the glass of a window in the Luxembourg Palace in Paris
through a crystal of Iceland spar. He showed that when the crystal was rotated,
one of the two images of the sun disappeared. Iceland spar is a birefringent
crystal which, as we shall see below, decomposes a light ray into two rays
polarized in perpendicular directions, while the ray reflected from the glass is
(partially) polarized. When the crystal is suitably oriented one then observes the
disappearance (or strong attenuation) of one of the two rays. The phenomenon of
polarization displays the vector nature of light waves, a property which is shared
by shear sound waves: in an isotropic crystal, a sound wave can correspond either
to a vibration transverse to the direction of propagation, i.e., a shear wave, or
to a longitudinal vibration, i.e., a compression wave. In the case of light the
vibration is only transverse: the electric field of a light wave is orthogonal to the
propagation direction.

Let us recall the mathematical description of a planar and monochromatic scalar
wave traveling in the z direction. The amplitude of vibration u(z, f) as a function
of time ¢ has the form

u(z, 1) = uycos(wt — kz),

where w is the vibrational frequency, k is the wave vector (k = 277/A, where A
is the wavelength), related by w = ck, where c is the propagation speed, here the
speed of light. It can be immediately checked that a maximum of u(z, ) moves
at speed w/k = c. In what follows we shall always work in a plane at fixed z, for
example, the z = 0 plane where

u(z=0,1) :=u(t) = uycos wt.
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6 What is a qubit?

When an electromagnetic wave passes through a polarizing filter (a polarizer),
the vibration transmitted by the filter is a vector in the xOy plane transverse to
the propagation direction:

E,. = Eycosfcoswt,

(2.1)

E, = E;sin 6 cos wt,

where 6 depends on the orientation of the filter. The light intensity (or energy)
measured, for example, using a photoelectric cell is proportional to the squared
electric field I « E(Z) (in general, the energy of a vibration is proportional to the
squared vibrational amplitude). The unit vector ' p in the xOy plane

p=(cosb,sinb), E =E,pcoswt, (2.2)

characterizes the (linear) polarization of the electromagnetic wave. If § =0 the
light is polarized in the x direction, and if § = 7r/2 it is polarized in the y direction.
Natural light is unpolarized because it is made up of an incoherent superposition
(this important concept will be defined precisely in Chapter 4) of 50% light
polarized along Ox and 50% light polarized along Oy.

We shall study polarization quantitatively using a polarizer—analyzer ensemble.
We allow the light first to pass through a polarizer whose axis makes an angle
0 with Ox, and then through a second polarizer, called an analyzer, whose axis
makes an angle o with Ox (Fig. 2.1), and write

n = (cosa, sina). (2.3)

Analyzer

Polarizer

Figure 2.1 A polarizer—analyzer ensemble.

! Throughout this book, unit vectors of ordinary space R* will be denoted by a hat: p = p/p, i =1/n,....
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2.1 The polarization of light 7

At the exit from the analyzer the electric field E' is obtained by projecting the
field (2.1) onto n:
E' = (E-h)i = Eycos wt(p-n)h
= Ecos wt(cos 6 cos @+ sin O sin a)n (2.4)

= Ecos wtcos(0 — a)n.
From this we obtain the Malus law for the intensity at the exit from the analyzer:
I' =1Icos*(—a). (2.5)

Linear polarization is not the most general possible case. Circular polarization
is obtained by choosing # = 7/4 and shifting the phase of the y component by
+/2. For example, for right-handed circular polarization we have

E,
E_ = —coswt,

X \/E
EO o EO .
E, = —cos (wt— —) = — sin wt.

V2 2/ V2

The electric field vector traces a circle of radius |Ey|/+/2 in the xOy plane. The
most general case is that of elliptical polarization, where the tip of the electric
field vector traces an ellipse:

(2.6)

E.=Ejcosfcos(wrt—98,) =EyRe [cos ge—i(wt—&x)] = E,Re (A e—im) ’
) ' 2.7
Ey =LK, sin QCOS((U[ — 8)) =E, Re [sin gefl(wt—ﬁy)] =E, Re (/-L efm)t) )

It will be important for what follows to note that only the difference 6 =
(0, —8,) is physically relevant. By a simple change of time origin we can,
for example, choose 6, = 0. To summarize, the most general polarization is
described by a complex vector normalized to unity (or a normalized vector) in a
two-dimensional space with components

A =COSO€i§X, m= sin(?ei‘sy,

and |A|> 4 |w|?> = 1. Owing to the arbitrariness in the phase, a vector with com-
ponents (A", u),

N=Ae? pu=pe,
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8 What is a qubit?
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Birefringent plate

Figure 2.2 Decomposition of the polarization by a birefringent plate. The ordi-
nary ray O is polarized horizontally and the extraordinary ray E is polarized
vertically.

represents the same polarization as (A, w). It is more correct to say that the polariza-
tion is represented mathematically by a ray, that is, by a vector up to a phase.

Remarks

e A birefringent plate (Fig. 2.2) can be used to separate an incident beam into two
orthogonal polarization states, and one can repeat the Malus experiment by checking
that a suitably oriented polarizing filter absorbs one of the two polarizations while
allowing the orthogonal one to pass through.

e Let us consider a crossed polarizer—analyzer ensemble, for example, with the polarizer
aligned along Ox and the analyzer along Oy. No light is transmitted. However, if we
introduce an intermediate polarizer whose axis makes an angle 6 with Ox, part of the
light is transmitted: the first projection gives a factor cos 6 and the second gives a
factor sin 0, so that the intensity at the exit of the analyzer is

I' = Icos’ Osin’ 6,

which vanishes only for § =0 or 6§ = 7/2.

2.2 Photon polarization

Ever since the work of Einstein (1905), we have known that light is composed of
photons or light particles. If the light intensity is reduced sufficiently, it should
be possible to study the polarization of individual photons which can easily be
detected using photodetectors, the modern version of which is the CCD (Charge
Coupling Device) camera.? Let us suppose that N photons are detected in an

2 A cell of the retina is sensitive to an isolated photon, but only a few percent of the photons entering the eye
reach the retina.
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2.2 Photon polarization 9

experiment. When N — oo it should be possible to recover the results of wave
optics which we have just stated above. For example, let us perform the following
experiment (Fig. 2.2). A birefringent plate is used to separate a light beam whose
polarization makes an angle 8 with Ox into a beam polarized along Ox and a
beam polarized along Oy, the intensities respectively being I cos® 6 and I sin® 6.
We reduce the intensity such that the photons arrive one by one, and we place
two photodetectors D, and D, behind the plate. Experiment shows that D, and
D, are never triggered simultaneously, 3 i.e., an entire photon reaches either D,
or D,: a photon is never split. On the other hand, experiment shows that the
probability p,(p,) that a photon is detected by D,(D,) is cos? O(sin® 0). If
photons are detected in the experiment, we must have N, () photons detected by
D, (Dy):

N, ~ N cos? 0, Ny ~ N sin? 0,

where >~ is used to indicate statistical fluctuations of order \/W . Since the light
intensity is proportional to the number of photons, we recover the Malus law in
the limit VV — oo. However, in spite of its simplicity this experiment raises two
fundamental problems.

o Problem 1 Is it possible to predict whether a given photon will trigger D, or D,? The
response of quantum theory is NO, which profoundly shocked Einstein (“God does not
play dice!”). Some physicists have tried to assume that quantum theory is incomplete,
and that there are “hidden variables” whose knowledge would permit prediction of
which detector a given photon reaches. If we make some very reasonable hypotheses
to which we shall return in Chapter 4, we now know that such hidden variables are
experimentally excluded. The probabilities of quantum theory are intrinsic; they are not
related to imperfect knowledge of the physical situation, as is the case, for example, in
the game of tossing a coin.

e Problem 2 Let us recombine * the two beams from the first birefringent plate by using a
second plate located symmetrically relative to the first (Fig. 2.3) and find the probability
for a photon to cross the analyzer. A photon can choose path E with probability cos? 6.
Then it has probability cos® a of passing through the analyzer, or a total probability
cos? @ cos? a. If path O is chosen, the probability of passing through the analyzer will
be sin” #sin” a. The total probability is obtained by adding the probabilities of the two
possible paths:

P = cos? 0 cos? @ + sin? B sin” a. (2.8)

3
4

Except in the case of a “dark count,” where a detector is triggered spontaneously.
With some care, as the difference between the ordinary and extraordinary indices of refraction must be taken
into account; cf. Le Bellac (2006), Exercise 3.1.
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10 What is a qubit?
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Figure 2.3 Decomposition and recombination of polarizations by means of bire-
fringent plates. The photon can choose path E (extraordinary), where it is polar-
ized along Ox, or path O (ordinary), where it is polarized along Oy.

This result is FALSE! In fact, we know from classical optics that the intensity is
I cos?*(6 — @), and the correct result, confirmed by experiment, is

Pt = cos’(0 — @), (2.9)
which is not at all the same thing!

In order to recover the results of wave optics it is necessary to introduce into
quantum physics the fundamental notion of a probability amplitude a(a — B).
A probability amplitude is a complex number, the squared modulus of which
gives the probability: p(a — B) = |a(a — B)|*. In the preceding example, the
relevant probability amplitudes are

a(@ — x) =cosf, a(x— a)=cosa,

a(@ —y) =sinf, a(y— a)=sina.

For example, a(f — x) is the probability amplitude that the photon polarized
along the direction 6 chooses the E path, where it is polarized along Ox. Then,
a basic principle of quantum physics is that one must add the amplitudes for
indistinguishable paths:

iy = cos B cos a+sinfsina = cos(0 — a),
which allows us to recover (2.9):
2 2
Prot = [@iot|” = cos™(0 — ).

The superposition of probability amplitudes in a,, is the exact analog of the
superposition of wave amplitudes: the laws for combining quantum amplitudes
are exact copies of those of wave optics, and the results of the latter are recovered
in the limit of a large number of photons. Let us suppose, however, that we have
some way of knowing whether a photon has followed path E or path O (this
is impossible in our case, but similar experiments to determine the path, termed
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