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1

Field theory review

Quantum field theory is the language in terms of which the laws of physics
are cast, and so we start with a whirlwind summary of some of its main
features. Interspersed amongst the introductory topics in this chapter we
also discuss some of the more general features that are usually demanded of
any reasonable field-theoretic description of nature.

1.1 Hilbert space, creation and annihilation operators

Quantum field theories are special kinds of quantum mechanical theories
which describe the behavior of particles. As quantum mechanical theories,
their most basic objects are the Hilbert space of possible states H, and the
Hamiltonian H which describes time evolution in that Hilbert space.

The possible kinds of states are zero-particle states, one-particle states,
two-particle states, and so on. Therefore, the Hilbert space in which all
operators live is the tensor product of the zero-particle space with the one-
particle space with the two-particle space, and so on:

H = H0 ⊗H1 ⊗H2 ⊗ · · · (1.1)

Here

H0 = {|0〉} (1.2)

denotes the one-dimensional space spanned by the zero-particle state or
vacuum: |0〉.

H1 = {|p, k〉} (1.3)

is similarly the span of all one-particle states with the basis states chosen to
be eigenstates of linear momentum. Here p represents the momentum of a
state, and k denotes all of the other particle labels.
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4 Field theory review

The space of N -particle states is constructed as the tensor product of N

copies of the one-particle space. For instance, H2 is the set of all two-particle
states,

H2 = {|p1, k1;p2, k2〉 = ±|p2, k2;p1, k1〉} (1.4)

etc. The sign, ±, is + for bosons and − for fermions. A Hilbert space con-
structed in this way is conventionally referred to as a Fock space.

It is convenient to express the operators that act within this space in terms
of a basic set of creation and annihilation operators in the following way.
The annihilation operator, apk, is the operator that removes the particle
with quantum numbers p and k from a given state. If the state on which
apk acts does not contain the particle in question then the operator is defined
to give zero. That is,

apk|0〉 = 0

apk|q, l〉 = 2Ep(2π)3δ3(p − q)δkl|0〉
apk|q, l;k, m〉 = 2Ep(2π)3δ3(p − q)δkl|k, m〉

±2Ep(2π)3δ3(p − k)δkm|q, l〉 (1.5)

and so on. Here, Ep is the energy of a particle of spatial momentum
p, namely,

√
p2 + m2, with m the mass of a particle with labels k. The

sign in this last result is ± according to the statistics of particles |p, k〉 and
|q, l〉. Here and throughout, we use units for which h̄ = C = 1. The nor-
malization is chosen to make Lorentz invariance more manifest, as discussed
below.

This definition implies that the Hermitian conjugate, a∗pk, of apk is a
creation operator for the same particle type; i.e.

a∗pi|0〉 = |p, i〉 (1.6)

a∗pi|q, j〉 = |p, i;q, j〉 (1.7)

etc. (Our notation is to use an asterisk for complex conjugation of c-numbers
and Hermitian conjugation of operators, and to reserve a dagger, †, for Her-
mitian conjugation of matrices.)

These definitions, together with the normalization convention

〈p, i|q, j〉 = 2Ep(2π)3δ3(p − q)δij (1.8)

imply the following properties. For bosons,

|p, i;q, j〉 = |q, j;p, i〉 (1.9)

[api, aqj ] =
[
a∗pi, a

∗
qj

]
= 0 (1.10)[

api, a
∗
qj

]
= 2Ep(2π)3δ3(p − q)δij (1.11)
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1.1 Hilbert space, creation and annihilation operators 5

and for fermions,

|p, i;q, j〉 = −|q, j;p, i〉 (1.12)

{api, aqj} = {a∗pi, a
∗
qj} = 0 (1.13)

{api, a
∗
qj} = 2Ep(2π)3δ3(p − q)δij (1.14)

in which [A, B] = AB − BA and {A, B} = AB + BA.
A few comments are in order about the field normalizations above. First,

note that momentum integrations dp/2π always have factors of 2π in the
denominator, and momentum delta functions 2πδ(p− q) always have factors
of 2π multiplying them. Following these rules,

• momentum space and energy integrations always involve
∫

d3p/(2π)3,∫
dE/2π;

• delta functions are always of form (2π)3δ3(p−q) or (2π)δ(E1 −E2),

accounts for all 2π factors we will ever encounter.
Second, the momentum delta functions we have written are accompanied

by factors of 2Ep, and the same 2Ep appears in the denominator in mo-
mentum integrations. This normalization, called relativistic normalization,
is convenient in a Lorentz invariant theory, because it makes it easier to
make Lorentz invariance manifest. Note in particular, that∫ d3p

2Ep(2π)3
=

∫ d4p

(2π)4
2πδ(p2 + m2)θ(p0) (1.15)

which is manifestly Lorentz invariant. [Note that our metric convention is
that ηµν = Diag[−1, 1, 1, 1], so p2 ≡ Zµνp

µpν = −(p0)2 + p2.] This expres-
sion can be verified by performing the p0 integration, using the δ function. Its
Lorentz invariance is not quite manifest, since the step function θ(p0) does
not look invariant, as it refers to the time component; but the 2πδ(p2 + m2)
forces pµ to be timelike for m2 > 0 and lightlike for m2 = 0, which en-
sures that the sign of p0 does not change under (orthochronous) Lorentz
transformations. Throughout this book, whenever there is an integral∫

d3p/(2π)32Ep, we will always implicitly define p0 = Ep inside the integral.
The fundamental claim now to be made is that any operator acting on

our Hilbert space, H, can be written as a linear combination of monomials
of the as and a∗s; i.e.,

O = A0,0 +
∑

i

∫ d3p

2Ep(2π)3
[
A0,1(p, i)api + A1,0(p, i)a∗pi

]
(1.16)

+
∑
ij

∫ d3p d3q

4EpEq(2π)6
[
A0,2(p, i;q, j)apiaqj + A1,1(p, i;q, j)a∗piaqj

+A2,0(p, i;q, j)a∗pia
∗
qj

]
+ · · · (1.17)
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6 Field theory review

The operators, O, are in one-to-one correspondence with the coefficient func-
tions {A0,0, A1,0(p, i), A0,1(p, i), . . .}. This can be shown inductively by ex-
plicitly solving for these coefficients in terms of the matrix elements of O:
〈ψ|O|φ〉. For example 〈0|O|0〉 = A0,0, 〈0|O|p, i〉 = A0,1(p, i), and so on.

In particular, the Hamiltonian for a system of free particles has a simple
expression in terms of the as and a∗s:

H0 = E0 +
∑

i

∫ d3p

2Ep(2π)3
ε(p, i)a∗piapi. (1.18)

To learn the interpretation of the coefficients E0 and ε(p, i), calculate the
action of H0 on various states. On the vacuum H0 gives

H0|0〉 = E0|0〉 (1.19)

since api|0〉 = 0. E0 is clearly the energy of the no-particle state |0〉, i.e. the
vacuum energy. Similarly,

H0|q, j〉 = [E0 + ε(q, j)] |q, j〉 (1.20)

and

H0|q1, j1; . . . ;qN , jN 〉 =

[
E0 +

N∑
k=1

ε(qk, jk)

]
|q1, j1; . . . ;qN , jN 〉 (1.21)

etc. The many-particle momentum eigenstates, |q1, j1; . . . ;qN , jN 〉 are also
eigenstates of the energy, H0, with eigenvalue

E = E0 +
N∑

k=1

ε(qk, jk). (1.22)

This implies that the energy of a single-particle state |p, i〉 relative to the
vacuum is ε(p, i). Relativistic kinematics then determines the momentum-
dependence of ε on p as

ε(p, i) =
√

p2 + m2
i = Ep (1.23)

where mi is the mass of particle type i. Notice that the energy of a many-
particle state relative to the vacuum is just the sum of the single-particle
energies, showing that the particles described by H0 do not interact.

We emphasize that this is a special property of free field theories; in
general, even if single-particle states are eigenstates of the Hamiltonian,
many-particle states are in general not eigenstates of the Hamiltonian. This
means that they can undergo non-trivial time evolution. Indeed, almost all
interesting phenomena in particle physics arise from the fact that many-
particle states are not eigenstates of the Hamiltonian.
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1.2 General properties of interactions 7

1.2 General properties of interactions

We are interested in writing down a Hamiltonian

H = H0 + Hint (1.24)

that describes the interactions of the particles we know. The present section
is devoted to summarizing the minimal requirements for a physically rea-
sonable theory. These properties translate into a set of restrictions on what
form will be allowed for H. The purpose of this process is to arrive at the
general class of theories from which the standard model is to be chosen. Be-
ing aware of the alternatives available gives some feeling for which features
may be changed and which are inviolable.

We now return to a statement of these requirements. A sketch of their
justification is given in the next subsection, but for a complete discussion
the reader should consult a field theory text.

1.2.1 Physical constraints on H

The basic principles we demand of any candidate physical theory are:

(i) Unitarity: (i.e. conservation of probability)
The requirement here is to ensure that time evolution preserve the
property that the sum of probabilities over all mutually exclusive
events gives one. This requires that the time-evolution operator

U = e−iHt (1.25)

be unitary. Equivalently the Hamiltonian must be Hermitia:

H = H∗. (1.26)

(ii) Cluster decomposition: (i.e. locality)
This requirement is that physics be independent at different points
in space at a given time. Specifically we require that amplitudes (and
hence probabilities) for events that are well separated from one an-
other factorize into a product of independent amplitudes. Such a fac-
torization is what would be expected for statistically independent
events.

The condition that physics at spatially separated positions be in-
dependent comes in two parts. The first is that physical observables
must commute at spatially separated points and the second is that
time evolution must preserve this property. We consider each of these
in turn:
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8 Field theory review

(a) Microcausality
The first condition is to require that physical observables may be
separately measurable at different positions and equal times. In a
quantum theory we must therefore demand that all physical observ-
ables commute at space-like separations. That is:

[A(x), B(y)] = 0 for (x − y)2 > 0. (1.27)

Condition (1.27) is sometimes referred to as the requirement of mi-
crocausality.

(b) Locality
We next require that this property, that spatially separated physical
amplitudes must factorize, be preserved by time evolution, provided,
of course, that no physical signals propagate from one point to the
other. Since the time-evolution operator, Eq. (1.25), is the exponen-
tial of the Hamiltonian, the property that it factorizes turns out to
require that the Hamiltonian should be the sum of those for each of
the spatially separated regions. The Hamiltonian must therefore have
the form

H =
∫

d3x H(x, t) (1.28)

which boils down to requiring that the total energy be a sum of the
energy of the degrees of freedom at each point. This is consistent
with the intuition that the degrees of freedom at each point of space
at a given time are independent, since the total energy for a set of
independent systems is the sum of the energies of the independent
constituents.

(iii) Invariance under Lorentz transformations and translations (Poincaré
invariance)
Here we build in the requirements of special relativity and translation
invariance in space and time. In quantum mechanics this implies the
existence of corresponding conserved charges, Pµ and Jµν = −Jνµ

(with µ, ν = 0, 1, 2, 3), representing four-momentum and angular mo-
mentum respectively. In particular, the total energy is given by

H = P 0

The particle states transform under unitary representations of the
Poincaré group given by the operators:

U(a, ω) = exp
[
−iaµPµ +

i
2
ωµνJ

µν
]

(1.29)
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1.2 General properties of interactions 9

generated by these conserved charges. The states, |p, σ, j〉, may then
be labelled by their three-momenta, p, mass, m, total spin, s, and
spin-projection, σ, together with any other internal labels, j. The
labels m and s are generally not explicitly indicated.

The Minkowski-space conventions used in what follows are:

ηµν =

⎛
⎜⎜⎜⎝

−1
1

1
1

⎞
⎟⎟⎟⎠ (1.30)

Pµ = (E,p), and Pµ = (−E,p) (1.31)

xµ = (t,x), and xµ = (−t,x) (1.32)

ε0123 = +1 (1.33)

implying that the invariant product x2 = −(x0)2 + x2 is negative
for timelike vectors and positive for space-like vectors. We provide a
review of Lorentz symmetry in Appendix C.

(iv) Stability:
The final condition to be imposed is that the spectrum of H be
bounded from below. This is necessary if the vacuum state, defined
as the state of lowest energy, is to exist.

1.2.2 Renormalizability

A further condition to be imposed on the standard model that is not as
fundamental as those just described is the requirement of renormalizability.
In fact, perfectly good theories, such as general relativity, are not renormal-
izable and yet are still very successful at accounting for experiments. Some
explanation is therefore required to justify this demand.

The physical motivation comes from the idea that physical theories gener-
ically come with an implicit minimum distance, d, (or maximum energy, Λ)
beyond which they are not meant to apply. For example, the quantum elec-
trodynamics of electrons and photons is only physically correct up to an
energy of twice the mass of the lightest particle that is heavier than the
electron: Λ = 2mµ, i.e. twice the muon mass. At energies higher than this,
muons can no longer be neglected, since they can be pair-produced in the fi-
nal state even if they are not present initially. The correct theory for physics
at energies above Λ becomes the quantum electrodynamics of photons, elec-
trons and muons. This theory is in turn only valid up to the next threshold,
the pion mass, and so on.
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10 Field theory review

Classically, it is not important to specify this “cut-off” carefully. In a
quantum theory, however, since all states can contribute to any given pro-
cess as intermediate (or “virtual”) particles, any quantum calculation will
depend explicitly on the cut-off scale, Λ. This may be seen, for example, by
considering the expression, in time-independent perturbation theory, for the
quadratic energy shift due to a perturbing Hamiltonian,

δEψ =
′∑
n

|〈ψ|H|n〉|2
Eψ − En

|n〉 �= |ψ〉 (1.34)

Clearly any state, |n〉, contributes to Eq. (1.34) regardless of its energy.
Given our ignorance of the spectrum above the energy Λ, it only makes
sense to include those states with energy less than Λ in this sum. The result
therefore depends explicitly on Λ in a potentially complicated way.

If detailed knowledge of physics at the Λ scale is necessary in order to
calculate probability amplitudes for processes at energies lower than Λ, then
the theory is called non-renormalizable. These theories have less predictive
power, since predictions depend on physics at the scale Λ, about which we
are by assumption quite ignorant.

In renormalizable theories, on the other hand, Λ only appears in physical
predictions (for large Λ) through a small number of parameters, such as
the masses and charges of some or all of the particles involved. All other
processes may then be computed in terms of these parameters. Once the
few Incalculable parameters are taken from experiment, definite predictions
may be made.

Whether or not a renormalizable theory should be expected to describe a
given system depends therefore on the properties of the system. Physically,
successful description in terms of a renormalizable theory is equivalent to
the statement that the physics of interest, at energies E � Λ, is largely
insensitive to the higher-energy physics appropriate to the scale Λ. In gen-
eral, a renormalizable description of the physics at an energy E is justified
to the extent that contributions of order E/Λ are not important. Otherwise
non-renormalizable interactions must be included.

As an example, consider the theory describing the energy levels of the hy-
drogen atom. Neglecting the structure of the nucleus, this theory is given by
the quantum electrodynamics of pointlike electrons, protons, and photons.
Ignoring nuclear structure (such as the proton magnetic moment) means
neglecting powers of Eatom/Mproton, and the resulting theory is renormaliz-
able. Within this theory atomic physics depends only on the electron and
proton mass and charge. If we demand accuracy higher than Eatom/Mproton,
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1.2 General properties of interactions 11

the proton structure cannot be ignored, leading to a non-renormalizable
description.

An example of a situation for which no renormalizable theory should be
expected is provided by the theory describing the nuclear scattering of the
deuteron. Suppose that in this theory we wish to ignore the fact that the
deuteron consists of a proton and neutron bound by these same nuclear inter-
actions, instead taking the deuteron as a point particle. The corresponding
theory that describes the scattering data cannot be renormalizable. This
reflects the fact that in this case the scale, Λ, of the physics being neglected
(the nuclear binding) and the scale, E, of the physics being studied (the
nuclear scattering) are essentially the same. Non-renormalizability is the
theory’s way of telling us that effects of order E/Λ cannot be neglected.

Turning this argument around, we can use the renormalizability of a the-
ory to tell us what the next scale, Λ, of new physics is. If we succeed in
describing all data at presently accessible energies, E, in terms of a renor-
malizable theory then we learn that the scale of any new physics can be
large: Λ � E. If a non-renormalizable theory is required, we learn that we
are still missing some fundamental ingredients.

This physical picture implies that renormalizability is the minimal crite-
rion for a theory which purports to describe all of the physics appropriate to
any given scale. Demanding renormalizability for the standard model then
amounts to the assumption that no hitherto unknown particles or inter-
actions are required to understand present experiments. As judged by the
splendid success of the standard model, this turns out to be a fairly good
assumption. The sole exception (at the time of this writing) is the physics of
neutrino oscillations, which appears to demand new physics; this can be un-
derstood within the standard model as the existence of non-renormalizable
interactions. We return to this point at some length in Chapter 10 (and
more generally to the issue of renormalizability and high-dimension opera-
tors in Chapter 7). Note, for the current purposes, that the scale required
to explain neutrino masses is Λ ∼ 1014 GeV. This is so much higher than
the intrinsic scales in the electroweak theory that, if the standard model
is correct up to this scale, there are virtually no other consequences of the
high-energy physics expected, and therefore we are (otherwise) very well
justified in treating the standard model as a renormalizable theory.

1.2.3 Canonical quantization

We now turn to the problem of how to ensure that a given set of interactions
incorporates the properties listed above. The most efficient way to do so is

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-86036-9 - The Standard Model: A Primer
C. P. Burgess and Guy D. Moore
Excerpt
More information

http://www.cambridge.org/0521860369
http://www.cambridge.org
http://www.cambridge.org

