List of contributors

1 Model checking and equivalence checking 1
Masahiro Fujita
1.1 Introduction 1
1.2 Techniques for Boolean reasoning 2
 1.2.1 Binary decision diagrams (BDDs) 3
 1.2.2 Boolean satisfiability checker 6
 1.2.3 Automatic test-pattern generation (ATPG) techniques 8
1.3 Model checking techniques 11
 1.3.1 Property description with temporal logic 11
 1.3.2 Basic algorithms of CTL model checking 14
 1.3.3 Symbolic model checking 16
 1.3.4 Practical model checking 20
1.4 Equivalence-checking techniques 22
 1.4.1 Definition of equivalent designs 23
 1.4.2 Latch-mapping problem 23
 1.4.3 Practical combinational equivalence checking 24
 1.4.4 Sequential equivalence checking (SEC) 28
1.5 Techniques for higher-level design descriptions 35
1.6 References 47

2 Transaction-level system modeling 51
Daniel Gajski and Samar Abdi
2.1 Taxonomy for TLMs 51
 2.1.1 Granularity-based classification of TLMs 52
 2.1.2 Objective-based classification 60
2.2 Estimation-oriented TLMs 62
 2.2.1 Result-oriented modeling (ROM) 63
 2.2.2 Similarity to TLM 63
 2.2.3 Optimistic modeling 64
2.2.4 Measurements 64
2.3 Synthesis-oriented TLMs

2.3.1 Universal bus channel (UBC) 67
2.3.2 Transducer 75
2.3.3 Routing 79
2.3.4 TLMs for C-based design 80
2.3.5 Synthesizable TLMs in practice: MP3 decoder design 83

2.4 Related work on TLMs 89
2.5 Summary and conclusions 90
2.6 References 90

3 Response checkers, monitors, and assertions

Harry Foster 92

3.1 Introduction 92
3.1.1 Identifying what to check 92
3.1.2 Classifying design behavior 93
3.1.3 Observability and controllability 96

3.2 Testbench verification components 97

3.3 Assertion-based verification 99
3.3.1 Brief introduction to SystemVerilog assertion 100

3.4 Assertion-based bus monitor example 102
3.4.1 Basic write operation 104
3.4.2 Basic read operation 105
3.4.3 Unpipelined parallel bus interface requirements 106
3.4.4 Unpipelined parallel bus interface coverage 108
3.4.5 Analysis communication in the testbench 110

3.5 Summary 111
3.6 References 112

4 System debugging strategies

Wayne H. Wolf 113

4.1 Introduction 113

4.2 Debugging tools 114
4.2.1 Logic analyzers and pattern generators 115
4.2.2 Power measurement 116
4.2.3 In-circuit emulators 117
4.2.4 Emulators 117
4.2.5 Profilers 117
4.2.6 CPU simulators 118

4.3 Debugging commands 118

4.4 Functional debugging 119
4.5 Performance-oriented debugging 119

4.6 Summary 120
4.7 References 121
5 Test generation and coverage metrics 122
Ernesto Sánchez, Giovanni Squillero, and Matteo Sonza Reorda

- 5.1 Introduction 122
- 5.2 Coverage metrics 128
- 5.3 Classification of coverage metrics 131
 - 5.3.1 Code coverage metrics 131
 - 5.3.2 Metrics based on circuit activity 136
 - 5.3.3 Metrics based on finite-state machines 137
 - 5.3.4 Functional coverage metrics 140
 - 5.3.5 Error- (or fault-) based coverage metrics 141
 - 5.3.6 Coverage metrics based on observability 143
- 5.4 Coverage metrics and abstraction levels of design 144
- 5.5 Stimuli generation methods 145
 - 5.5.1 Manual generation 146
 - 5.5.2 Automatic generation 147
- 5.6 Acknowledgements 151
- 5.7 References 151

6 SystemVerilog and Vera in a verification flow 154
Shireesh Verma and Ian G. Harris

- 6.1 Introduction 154
- 6.2 Testbench components 155
 - 6.2.1 Design under verification 156
 - 6.2.2 Monitor 156
 - 6.2.3 Checker 157
 - 6.2.4 Scoreboard 158
 - 6.2.5 Stimulus 159
- 6.3 Verification plan 160
- 6.4 Case study 160
 - 6.4.1 DUV 160
 - 6.4.2 Verification plan 163
 - 6.4.3 Testbench 163
- 6.5 Summary 171
- 6.6 References 172

7 Decision diagrams for verification 173
Maciej Ciesielski, Dhiraj K. Pradhan, and Abusaleh M. Jabir

- 7.1 Introduction 173
- 7.2 Decision diagrams 175
 - 7.2.1 Binary decision diagrams (BDDs) 175
 - 7.2.2 Beyond BDDs 181
- 7.3 Binary moment diagrams (BMDs) 183
7.4 Taylor expansion diagrams (TEDs)
 7.4.1 Related work
 7.4.2 Motivation
 7.4.3 The Taylor series expansion
 7.4.4 Reduction and normalization
 7.4.5 Canonicity of Taylor expansion diagrams
 7.4.6 Complexity of Taylor expansion diagrams
 7.4.7 Composition of Taylor expansion diagrams
 7.4.8 Design modeling and verification with TEDs
 7.4.9 Implementation and experimental results
 7.4.10 Limitations of TED representation
 7.4.11 Conclusions and open problems

7.5 Representation of multiple-output functions over finite fields
 7.5.1 Previous work
 7.5.2 Background and notation
 7.5.3 Graph-based representation
 7.5.4 Reduction
 7.5.5 Variable reordering
 7.5.6 Operations in GF("N"
 7.5.7 Multiple-output functions in GF("N"
 7.5.8 Further node reduction
 7.5.9 Representing characteristic functions in GF("N"
 7.5.10 Evaluation of functions
 7.5.11 Experimental results
 7.5.12 Conclusions

7.6 Acknowledgements

7.7 References

8 Boolean satisfiability and EDA applications
 8.1 Introduction
 8.2 Definitions
 8.2.1 Propositional formulas and satisfiability
 8.2.2 Boolean circuits
 8.2.3 Linear inequalities over Boolean variables
 8.2.4 SAT algorithms
 8.3 Extensions of SAT
 8.4 Applications of SAT in EDA
 8.4.1 Combinational equivalence checking
 8.4.2 Automatic test-pattern generation
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.3 Design debugging</td>
<td>259</td>
</tr>
<tr>
<td>8.4.4 Bounded model checking</td>
<td>260</td>
</tr>
<tr>
<td>8.4.5 Unbounded model checking</td>
<td>262</td>
</tr>
<tr>
<td>8.4.6 Other applications</td>
<td>263</td>
</tr>
<tr>
<td>8.5 Conclusions</td>
<td>263</td>
</tr>
<tr>
<td>8.6 Acknowledgement</td>
<td>263</td>
</tr>
<tr>
<td>8.7 References</td>
<td>263</td>
</tr>
</tbody>
</table>

Index 269