
Cambridge University Press & Assessment
978-0-521-85972-1 — Practical Design Verification
Dhiraj K. Pradhan, Ian G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Model checking and equivalence
checking

Masahiro Fujita

1.1 Introduction

Owing to the advances in semiconductor technology, a large and complex system that

has a wide variety of functionalities has been integrated on a single chip. It is called

system-on-a-chip (SoC) or system LSI, since all of the components in an electronics

system are built on a single chip. Designs of SoCs are highly complicated and require

many manpower-consuming processes. As a result, it has become increasingly difficult

to identify all the design bugs in such a large and complex system before the chips are

fabricated. In current designs, the verification time to check whether or not a design is

correct can take 80 percent or more of the overall design time. Therefore, the devel-

opment of verification techniques in each level of abstraction is indispensable.

Logic simulation is a widely used technique for the verification of a design. It

simulates the output values for given input patterns. However, because the quality of

simulation results deeply depends on given input patterns, there is a possibility that

there exist design bugs that cannot be identified during logic simulation. Because the

number of required input patterns is exponentially increased when the size of a design

is increased, it is clearly impossible to verify the overall design completely by logic

simulation. To solve this problem, the development of formal verification techniques is

essential. In formal verification, specification and design are translated into math-

ematical models. Formal verification techniques verify a design by proving its cor-

rectness with mathematical reasoning, and, therefore, they can verify the overall

design exhaustively. Since formal verification is a mathematical reasoning process and

logic circuits compute Boolean functions, it is realized on top of basic Boolean rea-

soning techniques, such as binary decision diagrams (BDDs), Boolean satisfiability

checking methods (so-called SAT methods), and automatic test-pattern generation

techniques (ATPG) for manufacturing test fields. The performance of formal verifi-

cation methods relies heavily on the performance of these techniques. Figure 1.1

shows an overview of a formal verification flow. In formal verification, both specifi-

cation and design descriptions are translated into mathematical models using front-end

tools. Finite state machines, temporal logic, Boolean functions, and so on, are used as

mathematical models. After mathematical models are obtained, they are analyzed

Practical Design Verification, eds. Dhiraj K. Pradhan and Ian G. Harris. Published by Cambridge University

Press. ª Cambridge University Press 2009.

www.cambridge.org/9780521859721
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-85972-1 — Practical Design Verification
Dhiraj K. Pradhan, Ian G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

using BDD and SAT methods. Formal verification is equivalent to simulating all the

cases in logic simulation. If there exists a design bug, formal verification techniques

produce a counter-example to support debugging processes.

There are basically two problems in the verification of designs: model checking and

equivalence checking. Model checking (or property checking) verifies whether a design

satisfies the properties given as its specification. The performance of model checking has

drastically improved in recent years, mainly owing to the significant progress of SAT-

based efficient implementations. Equivalence checking verifies whether two given

designs are equivalent or not. Equivalence checking can be applied to two designs in the

same design level or in two different design levels. Depending on the types of equivalence

definitions, equivalence checking can be made only on combinational parts of the circuits

or on both combinational and sequential parts of the designs. In particular, the former type

of equivalence checking has become very practical, and very large designs, such as those

with more than 10 million gates, can be formally verified in a couple of hours.

In the actual design flow from highly abstracted design stages down to imple-

mentation levels, model checking is applied to each design level to ensure correct

functionality, and equivalence checking is applied to any two different design levels so

that correctness of the designs can be established. In this chapter, I first briefly review

the Boolean reasoning techniques, BDD, SAT, and ATPG methods, in Section 1.2.

Property checking and equivalence checking techniques are presented in Sections 1.3

and 1.4 respectively. In Section 1.5, formal verification techniques used in design

levels higher than RTL are discussed.

1.2 Techniques for Boolean reasoning

In this section, I introduce three Boolean reasoning techniques, BDD, SAT, and ATPG

techniques, which are the bases of formal verification methods. The performance of

Spec

Mathematical

models

Design

Front-end

tool

Verification

engines

Finite state machine

Temporal logic

Boolean function

Other logic expressions

Binary decision diagram (BDD)

Satisfiability check (SAT)

Automatic test-pattern generation (ATPG)

Figure 1.1 Formal verification of design descriptions

2 M. Fujita

www.cambridge.org/9780521859721
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-85972-1 — Practical Design Verification
Dhiraj K. Pradhan, Ian G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

formal verification methods fully relies on the performance of these techniques. In

recent years SAT and ATPG methods, especially their program implementations, have

been drastically improved, which make it feasible to verify real-life designs formally

within reasonable time.

1.2.1 Binary decision diagrams (BDDs)

Reduced ordered binary decision diagrams (ROBDDs), simply called BDDs, are a

canonical representation for Boolean functions. For many Boolean functions of

practical interest in VLSI designs, BDDs provide a substantially more compact

representation than other traditional alternatives, such as truth tables, sum-of-products

(SOP) forms, or conjunctive normal form representations. Further, there exist efficient

algorithms to manipulate BDDs. Thus, BDDs and their variants have become widely

used in various areas of digital system design, including logic synthesis and formal

verification of systems that can be represented in finite state machines. Binary decision

diagrams represent the Boolean function as a directed acyclic graph. Let us first

consider binary decision trees, an example of which appears on the left-hand side of

Fig. 1.2, for the majority function, f(x1,x2,x3)¼ (x1^x2)

^

(x2^x3)

^

(x1^x3). The binary

decision tree is a rooted directed tree with two kinds of node, terminal nodes and non-

terminal nodes. Each non-terminal node v is labeled with a variable var(v) and has two

successors, hi(v) and lo(v), corresponding to the cases when var(v) is set to 1 and 0,

respectively. The edge connecting v and hi(v), shown as a solid line (lo(v) is shown as

a dashed line), is labeled with 1 (0). Each terminal node (leaf node of the tree) is

labeled by the Boolean value 0 or 1. Each truth assignment to the variables of the

function has a one-to-one correspondence to a path in the tree from the root to a

terminal node. This path can be traversed by starting with the root node and taking the

edge corresponding to the truth value of the variable labeling the current node. The

value labeling the terminal node is the value of the function under this truth assign-

ment. This representation is, however, fairly redundant. For example, the sub-trees

corresponding to the assignment (x1 ¼ 0, x2 ¼ 1) and (x1 ¼ 1, x2 ¼ 0) are isomorphic,

and the vertex that corresponds to (x1 ¼ 0, x2 ¼ 0) is redundant, since both assignments

to x3 at this point have the same consequence.

0

0

0

0

1

1
1

1

0 00

0

0

0

0

11

1

1

1

1

1

x1

x2

x1

x2 x2

x3

x2

x3 x4 x5 x3

0000 1111 0 1

Figure 1.2 A binary decision tree representation of a Boolean function and its corresponding binary

decision diagram (BDD)

1 Model checking and equivalence checking 3

www.cambridge.org/9780521859721
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-85972-1 — Practical Design Verification
Dhiraj K. Pradhan, Ian G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

A BDD could be obtained for a given Boolean function by essentially placing two

restrictions on its binary decision tree representation. The first restriction imposed is a total

order< on the variables labeling the vertices, such that for any vertex u in the diagram, if u

has a non-terminal successor v, then var(u) < var(v). The second set of restrictions

involves merging isomorphic sub-trees and removing redundant vertices by repeatedly

applying the following three reduction rules until no further application is possible.

1.. Remove duplicate terminals Eliminate all but one terminal vertex with a given

label and redirect all arcs going to the eliminated vertices into the remaining vertex.

2.. Remove duplicate non-terminals If two non-terminal vertices u and v have

var(u)¼ var(v), lo(u)¼ lo(v), and hi(u)¼ hi(v), then eliminate one of u or v and

redirect all incoming arcs to the eliminated vertex to the one that remains.

3.. Remove redundant tests If a non-terminal vertex v has hi(v)¼ lo(v), then eliminate

v and redirect all its incoming arcs to hi(v).

The resulting representation is a BDD. Figure 1.2 shows an example. The graph on the

right-hand side is a BDD corresponding to the binary decision tree of the majority

function, shown on the left-hand side in the figure.

Binary decision diagram representations are canonical – that is, two BDDs for a

given Boolean function under a given variable ordering are isomorphic. [1] Because

of this the equivalence of two Boolean functions can be simply checked by a graph

isomorphism check on their respective BDD representations. A function is a tautology

if and only if it is isomorphic to the trivial BDD corresponding to a single terminal 1

vertex and satisfiable if and only if it is not isomorphic to the trivial 0 BDD represented

by a single 0 terminal vertex. A function is independent of a variable x if and only if

there is no vertex labeled with x in its BDD.

The size of a BDD representation is critically dependent on its variable order.

Figure 1.3 shows two different BDD representations for the comparator function. The

one on the left side uses the ordering a1 < a2 < b1 < b2, while the one on the right uses

the order a1 < b1 < a2 < b2. More generally, for an n-bit comparator, the ordering

a1 < . . .<an < b1 <. . .< bn yields a BDD with 3 · 2n � 1 vertices, while the ordering

a1 < b1 <. . .< an < bn gives a BDD of size 3nþ 2. Thus, the size characteristics of the

a1

01

00

0

0

0
0

0

1

1

1

11

1

1

11
00

1 0

0

0

0

0

1

1

1

1

1
0

0

a2

a2
b1 b1

b2 b2
b2

b2

b1
b1

b1b1a2

a1

Figure 1.3 An example of how variable ordering can affect the size of an ROBDD

4 M. Fujita

www.cambridge.org/9780521859721
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-85972-1 — Practical Design Verification
Dhiraj K. Pradhan, Ian G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

BDD can change from linear asymptotic growth to exponential asymptotic growth by

altering the variable ordering strategy. In general, finding the optimal BDD variable

order for a given function is a hard problem. Specifically, checking that a given

variable order is optimal for a given function is an NP-complete problem. [2] Some

classes of Boolean function are particularly difficult cases for BDDs, since any vari-

able order results in a BDD with exponential complexity. The Boolean functions for

the middle two outputs of an n-bit integer multiplier are one such example. [3]

The optimal variable order is, however, typically not necessary in order to effect-

ively use BDDs. In practice, we need a variable order that keeps the BDD repre-

sentations within reasonable limits so that suitable algorithms can manipulate them

using the available computer power. In fact, many functions encountered in practical

applications do have reasonably compact BDD representations. Moreover, efficient

heuristics for BDD variable ordering have been developed that keep BDD sizes in

check. One class of variable-ordering heuristics uses domain-specific knowledge to

effect a good ordering. For example, if the Boolean function represents a logic gate

network, then a depth-first traversal on the network graph can provide a good ordering.

[4,5] Another technique, called dynamic reordering or sifting, [6] is an orthogonal

approach, which is used when a domain-specific or constructive ordering algorithm is

not available for the functions being manipulated. The technique simply performs a

sequence of local reordering moves with the aim of reducing BDD size. It does this on

a periodic basis to keep BDD sizes smaller and has often proved to be quite effective in

practice.

One operation that is central to the construction, representation, and manipulation of

BDDs is the restriction or co-factoring operation. A restriction or co-factor of f is the

function that results when some variable x of f is set to a constant value k (0 or 1),

denoted as fx¼k or alternatively as fx for x¼ 1 and f�x for x¼ 0. Given the two co-factors

of a function, it can be expressed using the following identity, known as Shannon’s

expansion: f ¼ x fx þx fx.

The manipulation of BDDs – that is, performing logical operations on functions

represented as BDDs – is done using a single universal operation called the ite (if-then-

else) operator (which internally makes use of the restriction operation). [7] The ite

operator is a ternary operator, akin in functionality to a multiplexor (mux) in hardware

or the if-then-else construct available in programming languages. It realizes the

function expressed as iteðf ; g; hÞ ¼ f g þ f h, where f, g, and h are Boolean func-

tions (possibly non-unique) represented as BDDs. In particular, ite can be used to

implement any two-variable logic function, such as f � g ¼ iteðf ; g; gÞ and

f � g ¼ iteðf ; 1; gÞ.

Figure 1.4 shows the algorithm used to implement the ite operator for BDDs. It is a

recursive algorithm where the leaves (terminal cases) of the recursion are degenerate

cases of the ite operator for which precomputed and stored solutions are substituted,

such as ite(1,f,g)¼ ite(0,g,f) and f ite(f,g,g)¼ g. During the course of the algorithm, the

BDD being generated may not remain fully reduced and canonical owing to the

addition of new nodes, R. The reduce() function in the figure refers to the application

of the reduction rules discussed earlier. In practical BDD packages, the need for this

1 Model checking and equivalence checking 5

www.cambridge.org/9780521859721
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-85972-1 — Practical Design Verification
Dhiraj K. Pradhan, Ian G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

reduce() operation is obviated by maintaining hash tables of both unique BDD nodes

and previous ite calls. New ite calls, as well as new BDD nodes (R) created through

them, are looked up against these hash tables before initiating new ones, thereby

dynamically maintaining and growing a reduced-ordered BDD.

1.2.2 Boolean satisfiability checker

The Boolean satisfiability (SAT) problem is a well-known constraint satisfaction

problem, with many applications in the fields of VLSI computer-aided designs and

artificial intelligence fields. Given a propositional formula u, the Boolean satisfiability

problem posed on u is to determine whether there exists a variable assignment under

which u evaluates to true. Such an assignment, if one exists, is called a satisfying

assignment for u, and u is called satisfiable. Otherwise, u is said to be unsatisfiable.

The SAT problem is known to be NP-complete. [8] However, in recent years, there

have been tremendous advancements in SAT technology, making SAT solvers a viable

option for solving many real-world problems.

Most SAT solvers use a conjunctive normal form (CNF) representation of

the propositional formula. A CNF formula consists of a conjunction of clauses, each of

which is a disjunction of literals, and a literal is a variable or its negation. For example

ða þ b þ cÞða þ cÞða þ b þ cÞ is a propositional formula in CNF over the variables a,

b, and c. It is composed of a conjunction of three clauses. The clause ða þ b þ cÞ is one

of the clauses, a disjunction of literals a, �b, and c. Note that for a CNF formula to be

satisfied, each of its clauses must be satisfied – that is, evaluate to true. There exist

polynomial algorithms to transform an arbitrary propositional formula into a satisfiability

equivalent CNF formula,which is satisfiable if and only if the original formula is satisfiable.

Most modern SAT solvers are based on the Davis–Putnam–Logemann–

Loveland (DPLL) procedure. [9,10] The DPLL algorithm essentially performs a

ite(f,g,h) {

if (terminal case) {

return computed-result;

 } else { // general case

 let � be the top variable of (f,g,h);

R = new node labeled by �

R.hi←

R.low←

reduce(R)

 return R;

f ← ite(f
�
,g

�
,h

�
)

f ← ite(f
�
,g

�
,h

�
)

f

g

~

~

~

~

Figure 1.4 Algorithm to implement the ite operator

6 M. Fujita

www.cambridge.org/9780521859721
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-85972-1 — Practical Design Verification
Dhiraj K. Pradhan, Ian G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

branch-and-bound search over the space of possible Boolean assignments of the

variables of the given propositional formula. It is a sound and complete algorithm –

that is, it finds a satisfying assignment if and only if the given formula is satisfiable.

Figure 1.5 shows the basic processing flow of the DPLL algorithm. This form provides

a suitable framework for illustrating the advanced features of modern DPLL-based

SAT solvers.

The first operation in the algorithm is a set of preprocessing steps (preprocess())

during which it may be discovered that the formula is unsatisfiable. If this is not the

case, the algorithm enters the outermost loop, which consists of choosing an

unassigned variable and assigning to it a value that has not been explored earlier

(decide-next-branch()). If no such variable exists, the current partial assignment is a

satisfying assignment for the formula. Otherwise, the variable assignments deducible

from the current assignments are applied (deduce()) using a procedure known as

Boolean constraint propagation (BCP). This consists of an iterated application of the

unit clause rule, which is applied on unit clauses – that is, clauses with all but one

literal assigned to false and the last literal unassigned. The unit clause rule asserts the

last unassigned literal of each unit clause as true, since the other assignment represents

a search path that cannot lead to a satisfying assignment. A conflict occurs when a

variable is asserted as true as well as false. If BCP does not lead to a conflict, the

decide-next-branch() loop is repeated by choosing further unassigned variables and

values. However, in the event of a conflict, the search backtracks (backtrack()) by

undoing a certain number of decisions and their BCP implied assignments, based on an

analysis of the conflict by analyze-conflict(). If all decisions need to be undone

(i.e., the backtrack-level blevel is 0), the formula is deemed unsatisfiable, since the

entire search space has been exhausted.

The original DPLL algorithm used chronological backtracking – that is, it would

backtrack up to the most recent decision, for which the other value of the variable had

not been tried. However, modern SAT solvers use conflict analysis techniques (shown

as (analyze-conflict) in the figure) to analyze the reasons for a conflict. Conflict

analysis is used to perform conflict-driven learning and conflict-driven backtracking,

which were incorporated independently in the GRASP [11] and rel-sat [12] SAT

sat-solve()
 if preprocess() = CONFLICT then

return UNSAT
while TRUE do

if not decide-next-branch() then

return SAT;
while deduce() = CONFLICT do

blevel ⇐ analyze-conflict();
if blevel = 0 then

return UNSAT;
backtrack (blevel);

done;

done;

Figure 1.5 A generalized DPLL algorithm

1 Model checking and equivalence checking 7

www.cambridge.org/9780521859721
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-85972-1 — Practical Design Verification
Dhiraj K. Pradhan, Ian G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

solvers. Conflict-driven learning consists of adding conflict clauses to the formula, to

avoid the same conflict in the future. Conflict-driven backtracking allows non-

chronological backtracking – that is, up to the closest decision that caused the conflict.

These techniques greatly improve the performance of the SAT solver on structured

problems. The conflict analysis is realized using implication graphs, [11,13] which

capture the current state of the SAT solver.

Many other advances have been made in developing the basic components that

comprise the DPLL-based SAT solver: the decision engine (heuristics for choosing

decision variables and values); the deduction engine (data structures and heuristics for

performing BCP and detecting conflicts); and the diagnosis engine (heuristics for

conflict-driven learning). [14] An interesting property of CNF representations was first

exploited by Zhang in the SATO SAT solver [15] to improve the performance of BCP.

It proposed the use of head and tail pointers to point to non-false literals in the list

representation of a clause, and maintained the strong invariant that all literals before

the head pointer, and all literals after the tail pointer, are false. Clearly, detection of a

unit clause during BCP becomes easy – that is, when the head and tail pointers

coincide on an unassigned literal. The main advantage is that the clause status is

updated only when either of the head or tail literals is assigned a false value during

BCP. In particular, this eliminates an update when any of the other literals in the clause

is assigned a value. When the head or tail literal is assigned a false value during BCP,

the associated pointer needs to be moved to another non-false literal, if it exists. This is

facilitated by the strong invariant. However, during backtracking, the head or tail

pointers may need to be moved back again, to maintain the strong invariant.

A different trade-off was proposed in the Chaff SAT solver. [16] Its BCP scheme,

known as two literal watching with lazy update, is also based on tracking only two

literals per clause during BCP. However, Chaff maintains a weak invariant, whereby

the two watched literals are required to be non-false, but there is no ordering

requirement with respect to other false literals. Again, detection of a unit clause during

BCP is easily performed by checking whether both watched pointers coincide, and

whether clause updates on assignment to other literals are eliminated.

Most of the modern-day SAT solvers incorporate the advanced techniques for

conflict-based learning, branching heuristics, and efficient BCP described above as

well as efficient data structures and extremely well-tuned implementations to exploit

their algorithmic power fully. With these advancements, SAT solvers can now analyze

formulas of up to a million variables and three to four million clauses in a few hours of

runtime. Of course, these figures hold for only fairly structured SAT instances derived

from certain classes of real-world problems.

1.2.3 Automatic test-pattern generation (ATPG) techniques

Automatic test-pattern generation (ATPG) is the process of generating a suite of test

vectors that can be used for the purposes of testing a manufactured circuit for

manufacturing faults. Manufacturing faults are physical defects introduced into the

integrated circuit (IC), during the manufacturing process, which result in its incorrect

8 M. Fujita

www.cambridge.org/9780521859721
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-85972-1 — Practical Design Verification
Dhiraj K. Pradhan, Ian G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Primary

inputs
Justify Primary

outputs
Propagate

S

S–a–

X0

Figure 1.6 ATPG process for a single stuck-at-0 fault

a

b

c

d

e

f

0

0

0

1

Figure 1.7 An example of implication and learning from circuits

operation. The fault we consider here is one that causes a signal to be permanently

stuck at a logical value 0 or 1 (or a defect that can, for all practical purposes, be

modeled as such). Such a fault is called a stuck-at (0 or 1) fault. Very efficient ATPG

algorithms for stuck-at faults have been developed, which can be applied to Boolean

function reasoning. Therefore, powerful formal verification techniques may be

established using ATPG techniques. Thus, the purpose here is to show basic concepts

and developments in ATPG so that the link of ATPG to formal verification algorithms

becomes evident.

Figure 1.6 illustrates the steps involved in trying to generate a test pattern for a

single stuck-at fault. In this example, the signal s is assumed to be under stuck-at-0

fault. To generate a test for s stuck-at-0, we need to find a vector of primary inputs that

sets signal s to 1 (justification step) such that some primary output differs between the

good circuit and the faulty circuit (propagation step).

As can be seen from the figure, the ATPG problem is basically a sort of SAT problem.

We need to reason about the values of signals based on the constraints shown in the figure.

Automatic test-pattern generation techniques have, however, their own historical devel-

opments rather independent fromSATmethod. Their algorithms and heuristics are mostly

based on logic-circuit structures and properties of logic gates. This means that techniques

used in ATPG methods can be used in SAT methods and vice versa.

One of the most important techniques in ATPG to speed up the test pattern gen-

eration processes is called “learning.” [17,18] As seen in the previous sections, the

concept of learning is also utilized in SAT methods to make them much more efficient.

Similar efficiency can be achieved in ATPG processes by learning implications of

values of signals from the target circuits. Figure 1.7 shows an implication example.

Suppose that input b is 0. Owing to the nature of the AND gate, d and e also become

0. This implies that f is 1. In summary, we have an implication of values that b¼ 0

implies f¼ 1. Please note that this implication process utilizes the functionality of AND

and NOR gates. More learning can be made from this by using the law of contraposition,

1 Model checking and equivalence checking 9

www.cambridge.org/9780521859721
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-85972-1 — Practical Design Verification
Dhiraj K. Pradhan, Ian G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

that is, we can also conclude that f¼ 0 implies b¼ 1. As can be seen from the figure, this

learned implication is not so obvious. From f¼ 1 we cannot have fixed values for d and

e, since what is required from f¼ 1 on d and e is that at least one of d and e must be 1,

that is d¼ 1 and e¼* (don’t care) or d¼* and e¼ 1. There are two possible values for d

and e, which means that further reasoning on values of signals is not straightforward. As

can be seen from the example, by using the law of contraposition, many more impli-

cations can be obtained, which will further enhance the ATPG processes.

As the discussions above on the circuits shown in Fig. 1.7, if f¼ 0, there are several

possible cases of values on d and e. As a result, no further simple implication of the

values of signals can be made. On the other hand, in both ATPG and SAT methods,

reasoning is based on case splitting and backtracking, and knowledge about necessary

assignments computed from learning processes is crucial for the number of backtracks

which must be performed. Backtracks occur if wrong decisions have been made, i.e.,

decisions considered wrong if they violate necessary assignments. Hence, it is

important to realize that if all necessary assignments are known at every stage of the

test-pattern generation process (or in general in all Boolean reasoning processes)

backtracks can be avoided. Simple learning methods [17,18] cannot identify all

necessary assignments, based, as they are, on polynomial time-complexity algorithms.

The problem of identifying all necessary assignments is NP-complete and a method

that guarantees identifying all necessary assignments must be exponential in time

complexity. One such technique, which can identify all necessary assignments, is

“recursive learning”. [19] It involves applying learning methods in a recursive way so

that even if multiple cases happen when computing implications, all such cases are

exhaustively analyzed. For example, let us consider the case of f¼ 0 in the circuit of

Fig. 1.7. In this case, there are two cases of values for d and e, i.e., d¼ 1 and e¼* or

d¼* and e¼ 1. Recursive learning procedures analyze one case at a time and

proceed the necessary assignment analysis in a recursive way. The two cases are

shown in Figs. 1.8 (a) and (b), respectively. In (a), d¼ 1 implies a¼ 1 and b¼ 1. In (b),

e¼ 1 implies b¼1 and c¼ 1. The important point here is that in both cases b¼ 1. That

is, b is always 1. So we can conclude that f¼ 0 implies b¼ 1 without using the law of

contraposition. In this simple example, the same implication can also be obtained by

applying the law of contraposition to the implication obtained in Fig. 1.7. In general,

however, much more learning can be obtained with recursive learning techniques,

especially if there are more recursions. The level of recursion is defined as the number

a

b

c

d

e

f

1

1

*

0

1

(a)

a

b

c

d

e

f

1

*

1

0

1

(b)

* 1

Figure 1.8 Two cases for f¼ 0 in the circuit of Fig. 1.7

10 M. Fujita

www.cambridge.org/9780521859721
www.cambridge.org

