Ocean Engineering Mechanics provides an introduction to water waves and wave-structure interactions for fixed and floating bodies. The author provides a foundation in wave mechanics, including a thorough discussion of linear and nonlinear regular waves, and he presents methods for determining the averaged properties of random waves. He then explains applications to engineering situations in coastal zones. This introduction to the coastal engineering aspects of wave mechanics includes an introduction to shore protection. The book also covers the basics of wave-structure interactions for situations involving rigid structures, compliant structures, and floating bodies in regular and random seas. The final chapters deal with the various analytical methods available for the engineering analyses of wave-induced forces and motions of floating and compliant structures in regular and random seas. An introduction to soil-structure interactions is also included. This book can be used for both introductory and advanced courses in ocean engineering mechanics.

Michael E. McCormick is currently the Corbin A. McNeill Professor in the Department of Naval Architecture and Ocean Engineering at the U.S. Naval Academy. He is a Fellow of the Marine Technology Society, the American Society of Mechanical Engineers, and the American Society of Civil Engineers. In 1976, he became the co-editor of the journal Ocean Engineering and remained so for thirty years. Prior to that, he was the editor of the Marine Technology Society Journal. Professor McCormick was the first recipient of the U.S. Naval Academy Alumni Award for Research Excellence, and he was also awarded the U.S. Navy Meritorious Civilian Service Award and the U.S. Navy Superior Civilian Service Award. He is the author of Ocean Engineering Wave Mechanics and Ocean Wave Energy Conversion. Professor McCormick received a Ph.D. in mechanical engineering from the Catholic University of America and a Ph.D. in civil engineering and a Sc.D. in engineering science from Trinity College, Dublin.
Ocean Engineering Mechanics

WITH APPLICATIONS

Michael E. McCormick
United States Naval Academy
I dedicate this book to my dear wife, Mary Ann, and to my family for their love and support, and to my dear friend and colleague, Professor Rameswar Bhattacharyya, for his never-ending support and encouragement, and to the late Professor Manley St. Denis for all he taught me in the early days of my career.
Contents

Preface .. xvii
Notation .. xix

1. **Introduction** .. 1
 1.1 Generation of a Sea .. 1
 1.2 Wind Classification and Sea State .. 4
 1.3 Ocean Engineering Literature .. 4

2. **Review of Hydromechanics** .. 7
 2.1 Hydrostatics .. 7
 Example 2.1: Pressure Hull Analysis .. 9
 2.2 Conservation of Mass .. 11
 Example 2.2: Flow Through a Manifold .. 13
 2.3 Rotational and Irrotational Flows .. 14
 A. Circulation .. 15
 B. The Velocity Potential .. 16
 C. The Stream Function .. 17
 D. Superposition of Irrotational Flow Patterns .. 19
 Example 2.3: Two-Dimensional Irrotational Flow about a Circular Cylinder .. 19
 2.4 Conservation of Momentum and Energy .. 21
 Example 2.4: Pressure Distribution on a Cylinder in an Irrotational Flow .. 22
 2.5 Viscous Flows .. 24
 Example 2.5: Incipient Cavitation on a Vertical Circular Cylinder .. 23
 2.6 Hydrodynamics of Submerged Bodies .. 30
 Example 2.6: Drag and Vortex Shedding for an OTEC Cold-Water Pipe .. 27
 2.7 Scaling .. 37
 Example 2.7: Flow about a Sphere .. 32
 Example 2.8: Flow about a Body of Revolution .. 35
 2.8 Closing Remarks .. 42

© in this web service Cambridge University Press
www.cambridge.org
3. **Linear Surface Waves** .. 44
 3.1 Wind-Wave Generation 45
 3.2 Airy’s Linear Wave Theory 47
 Example 3.1: Linearization 49
 3.3 Traveling or Progressive Waves 52
 Example 3.2: Wavelength Variation with Water Depth 53
 Example 3.3: Wavelength Solution by Successive Approximations 54
 Example 3.4: Deep- and Shallow-Water Wavelength Approximations 55
 3.4 Standing Waves 56
 Example 3.5: Standing Waves at a Seawall 57
 3.5 Water Particle Motions 59
 3.6 The Wave Group 61
 Example 3.6: Deep-Water Wave Group 63
 3.7 Wave Energy and Power 64
 Example 3.7: Deep- and Shallow-Water Wave Energy 65
 Example 3.8: Deep- and Shallow-Water Wave Power 66
 Example 3.9: Wave Power Conversion 67
 3.8 Shoaling 68

4. **Nonlinear Surface Waves** 73
 4.1 Nonlinear Wave Properties 74
 4.2 Stokes’ Wave Theory 76
 Example 4.1: Deep- and Shallow-Water Free-Surface Profiles 83
 Example 4.2: Free-Surface Displacement in Deep Water 85
 4.3 Second-Order Particle Motions 86
 4.4 Water Particle Convection 88
 Example 4.3: Deep- and Shallow-Water Particle Convection Velocities 89
 Example 4.4: Wave-Induced Spreading of a Surface Spill 91
 4.5 Long Waves in Shallow Water 92
 A. Cnoidal Wave Theory 92
 B. Application of the Cnoidal Theory 98
 Example 4.5: Application of the Cnoidal Theory 100
 C. The Solitary Wave 101
 Example 4.6: Application of the Solitary Theory 102
 4.6 Breaking Waves 104
 A. Stokes’ Deep-Water Analysis 104
 B. Miche’s Formula: Breaking Waves in Waters of Finite Depth 106
 Example 4.7: Theoretical, Deep-Water Breaking Wave Profiles 107
 C. Breaking Solitary Waves 108
 Example 4.8: Breaking Height of a Shoaling Solitary Wave 110
 4.7 Summary 111
 4.8 Closing Remarks 112

5. **Random Seas** ... 113
 5.1 Introduction 113
 5.2 Statistical Analysis of Measured Waves 115
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Wave Modification and Transformation</td>
<td>161</td>
</tr>
<tr>
<td>6.1</td>
<td>Wave Reflection from Vertical Barriers</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>A. Perfect Reflection of Linear, Monochromatic Waves</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Example 6.1: Perfect Oblique Reflection</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>B. Imperfect Reflection of Direct, Monochromatic, Linear Waves – Healy’s Formula</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Example 6.2: Direct Partial Reflection of Linear Waves</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>C. Reflection from a Vertical Porous Barrier</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Example 6.3: Partial Reflection from a Porous Breakwater</td>
<td>170</td>
</tr>
<tr>
<td>6.2</td>
<td>Reflection from Inclined Barriers – The Long-Wave Equations</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>A. The Long-Wave Equations</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>B. Perfect Reflection from an Inclined Barrier</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>Example 6.4: Totally Reflected Waves on an Inclined Barrier</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>C. Nonreflecting Beaches</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Example 6.5: Shoaling on a Nonreflecting Beach</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>D. Reflection from a Bed of Intermediate Slope</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Example 6.6: Convergence of the Reflection Coefficient and Phase Angle</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>Example 6.7: Reflection from a Bed Transition</td>
<td>185</td>
</tr>
<tr>
<td>6.3</td>
<td>Refraction without Reflection – Snell’s Law</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Example 6.8: Shoaling and Refraction on a Straight, Parallel Contoured Beach</td>
<td>187</td>
</tr>
<tr>
<td>6.4</td>
<td>Diffraction</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>A. Huygens’ Principle</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>B. Basic Equations and Boundary Conditions in the Analysis of Diffraction</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>C. Modified Huygens-Fresnel Principle</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>D. Diffraction Analyses of Water Waves</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>(1) Diffraction of Waves Directly Incident upon a Semi-Infinite Breakwater</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>Example 6.9: Diffraction Coefficients along the Leeward Sides of Rigid and Compliant Breakwaters</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>(2) Diffraction of Waves Obliquely Incident upon a Semi-Infinite Breakwater</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Example 6.10: Diffraction Coefficients along the Leeward Sides of a Rigid Breakwater</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>(3) Diffraction of Waves by a System of Detached Breakwaters</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Example 6.11: Waves Directly Incident on a Gap between Semi-Infinite Breakwaters</td>
<td>211</td>
</tr>
<tr>
<td>6.5</td>
<td>The Mild-Slope Equation</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>A. Derivation of the Mild-Slope Equation</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>B. Application to a Straight and Parallel Contoured Bed</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Example 6.12: Application of the Mild Slope to Pure Shoaling</td>
<td>221</td>
</tr>
<tr>
<td>6.6</td>
<td>Closing Remarks</td>
<td>223</td>
</tr>
</tbody>
</table>
7. Waves in the Coastal Zone .. 224
 7.1 Coastal Zone Phenomena ... 225
 7.2 Empirical Analyses of Breaking Waves on Beaches 226
 Example 7.1: Breaking Wave Properties over a Flat, Horizontal Bed 229
 Example 7.2: Breaking Wave Properties on a Beach of Uniform Slope – Empirical Equations 230
 7.3 Surf Similarity ... 231
 A. Breaking Waves .. 232
 B. Wave Reflection ... 233
 C. Runup .. 233
 Example 7.3: Breaking Wave Properties on a Beach of Uniform Slope – Surf Similarity 234
 7.4 Surf Zone Hydromechanics – Radiation Stress 234
 A. Radiation Stress ... 235
 (1) Radiation Stress in the Direction of Wave Travel 235
 (2) Radiation Stress Transverse to the Wave Travel 237
 (3) Radiation Stress Matrix 237
 Example 7.4: Comparison of Radiation Stress in Deep and Shallow Waters 238
 (4) Transformation of the Radiation Stress Matrix 238
 Example 7.5: Normal and Diagonal Radiation Stress Components for a Breaking Wave 240
 B. Wave Set-Up and Set-Down 240
 Example 7.6: Comparison of Theoretical and Experimental Wave Height, Water Depth, and Set-Down at a Break and Runup 245
 Example 7.7: Set-Up in the Surf Zone 246
 C. Longshore Velocity ... 246
 (1) Negligible Lateral Mixing 251
 (2) Negligible Bed Friction 251
 (3) Combined Bed Friction and Lateral Mixing Effects 251
 Example 7.8: Maximum Longshore Velocity 254
 D. Average Longshore Volume Flow Rate 255
 Example 7.9: Longshore Volume Transport Rate 256
 Example 7.10: Longshore Sediment Transport Rate 257
 7.5 Closing Remarks ... 257

8. Coastal Engineering Considerations 258
 8.1 Shore Protection Methods .. 258
 Example 8.1: Planning a Groin Field 261
 8.2 Decision Process in Coastal Protection 262
 Example 8.2: Decision Tree for Shoreline Erosion Abatement 262
 8.3 Rubble-Mound Structures 263
 A. Stone Selection for Rubble-Mound Breakwaters 265
 (1) Armor Stone ... 265
 (2) Shield Stone .. 265
 (3) Foundation Stone .. 265
 (4) Toe-Berm Stone ... 266
 Example 8.3: Preliminary Design of a Rubble-Mound Breakwater 267
8.4 Reliability of a Rubble-Mound Structure 268
Example 8.4: Reliability of a Rubble-Mound Breakwater 269
Example 8.5: Weibull Reliability of a Rubble-Mound Breakwater 271
8.5 Closing Remarks 272

9. Wave-Induced Forces and Moments on Fixed Bodies 273

9.1 Wave-Induced Forces and Moments on a Seawall 274
A. Pressure, Force, and Moment Resulting from Direct Reflection of Linear Waves 274
Example 9.1: Wave Force and Moment on a Seawall Due to Standing Linear Waves 276
B. Pressure and Force Resulting from Direct Reflection of a Solitary Wave 276
Example 9.2: Pressure Distribution on a Seawall beneath a Solitary Wave 279

9.2 Wave-Induced Forces on Submerged and Surface-Piercing Bodies 280
A. The Concept of Added Mass 280
(1) Cylinders with Circular Cross-Sections 282
(2) Cylinders with Noncircular Cross-Sections – Lewis Forms 283
Example 9.3: Two Lewis Forms 286
Example 9.4: Added Mass of a Noncircular Cylinder 288
B. Natures of Wave-Induced Forces on Circular Cylinders 289
C. Wave-Induced Drag Forces 290
D. The Morison Equation 292
Example 9.5: Force and Moment on a Vertical Circular Pile in Shallow Water 294
E. Circular Cylinders of Large Diameter – The MacCamy-Fuchs Analysis 297
Example 9.6: Force and Moment on a Cofferdam in Shallow-Water Linear Waves 303
F. Mass Coefficient for a Circular Cylinder 304
G. Diffraction Force and Moment on a Rectangular Cylinder 305
Example 9.7: Force and Moment on a Square Cylinder in Shallow-Water Linear Waves 307
H. Truncated Circular Cylinder of Large Diameter 307
(1) Approximations of the Horizontal Force and Resulting Moment 308
(2) Approximations of the Vertical Force and Resulting Moment 309
Example 9.8: Wave-Induced Forces on a Spar Work Platform 311
(3) Garrett’s Analysis 312
(4) Results of the Approximate and Garrett Forces 322
I. Scattering Effects of Large-Diameter Leg Arrays 324
Example 9.9: Wave-Induced Forces on an In-Line, Two-Leg Platform 332
9.3 Wave-Induced Forces and Moments on Bodies in Random Seas 334
A. Spectral Nature of Wave-Induced Viscous-Pressure and Inertia Forces 336
Example 9.10: Predicted and Measured Wave and Force Spectra on a Circular Pile 338
B. Probabilistic Nature of the Viscous-Pressure and Inertia Wave Forces 338
Example 9.11: Probabilities of Occurrence for the Maximum Drag Force on a Circular Pile 342
Example 9.12: Most-Probable Maximum Force for the 100-Year Storm 343
C. Random Nature of Diffraction Forces on a Fixed, Vertical Circular Cylinder 345
Example 9.13: Diffraction Forces on a Monolithic Gravity Structure 346
Example 9.14: Extreme Diffraction Forces on a Monolithic Gravity Structure 348
9.4 Closing Remarks 349

10. Introduction to Wave-Structure Interaction 350
10.1 Basic Concepts 350
A. Equations of Motion 351
B. Added Mass and Radiation Damping 352
C. Equivalent Viscous Damping Coefficient 354
D. Steady-State Solution of the Heaving Equation 356
Example 10.1: Heaving Motion of a Can Buoy 356
E. Determination of Added Mass and Resonant Damping Coefficients in Calm Water 358
Example 10.2: Experimental Determination of Heaving Added Mass and Damping Logarithmic Decrement Method 360
F. Bandwidth Determination of Damping in Wave-Induced Heaving Motions 361
Example 10.3: Experimental Determination of Damping in Wave-Induced Heaving-Half-Power Bandwidth Method 363
Example 10.4: Experimental Determination of Component Damping Coefficients 364
10.2 Power Take-Off 365
Example 10.5: Power Take-Off of a Heaving Circular Cylinder at Resonance 366
10.3 Random Motions 368
Example 10.6: Root-Mean-Square Heaving Response of Underdamped Motions of a Can Buoy in a Random Sea 371
Example 10.7: Root-Mean-Square and Extreme Heaving Amplitudes of Highly Damped Motions of a Can Buoy in a Random Sea 372
10.4 Closing Remarks 375

11. Wave-Induced Motions of Floating Bodies 376
11.1 Hydrostatic Considerations – Initial Stability 377
Example 11.1: Roll Stability of a Can Buoy 380
11.2 Floating Body Motions 380
A. Boundary Condition on the Body 381
Example 11.2: Body Condition for a Semi-Submerged, Heaving Sphere 382
B. Heaving and Pitching Equations of Motion 383
C. Introduction to Strip Theory 384
<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Title</th>
<th>Publisher</th>
</tr>
</thead>
</table>

Contents

- (1) Hydrostatic Restoring Force and Moment 386
- (2) Viscous Damping Force and Moment 386
- (3) Hydrodynamic Forces and Moments 387

D. Coupled Heaving and Pitching Equations of Motion 390

11.3 Two-Dimensional Hydrodynamics – Vertical Body Motions 392

A. Strip Geometries – Lewis Forms 393

Example 11.3: Lewis Ship-Shape Section (Strip) 396

B. Velocity Potentials 398

(1) Incident Wave Potential 398

(2) Vertical Motions of Lewis Forms – Velocity Potential and Stream Function 399

Example 11.4: Velocity Potential and Stream Function for a Heaving Circular Strip 401

(3) Velocity Potential for the Wave-Body Interaction 402

(4) Total Velocity Potential 402

C. Hydrodynamic Pressures and Forces on the Strip in Deep Water 402

(1) Wave-Induced Pressure and Force 403

Example 11.5: Wave-Induced Vertical Forces on Two Strip Geometries 405

(2) Motion-Induced Pressure and Force 407

Example 11.6: Spatial Variation of a Semicircular Sectional Area 408

Example 11.7: Motion-Induced Vertical Forces on Two Strip Geometries 410

(3) Wave-Body Interaction Pressure and Force on a Strip 411

Example 11.8: Wave-Body Interaction Forces on Two Strip Geometries 413

D. Radiation Damping 415

Example 11.9: Radiation Damping Coefficients Using the YFF Formula 416

Example 11.10: Radiation Damping Coefficient Using the Tasai Formula 417

11.4 Coupled Heaving and Pitching Motions Based on Strip Theory 419

Example 11.11: Transverse Stability and Planar Motions of a Barge in Linear Waves 422

11.5 Experimental and Theoretical Hydrodynamic Coefficient Data 431

A. Modification of the Lewis Added-Mass Coefficients to Include Frequency Dependence 431

B. Vertical Motions of a Rectangular Section 432

C. Vertical Motions of a Semicircular Section 433

11.6 Singularity Method of Determining the Hydrodynamic Coefficients 434

A. The Source Pair 436

B. Distributed Sources – Rectangular Strip 438

(1) Alternative Infinite-Frequency Added Mass of a Heaving Rectangular Strip 440

Example 11.12: Alternative Expression for the Added Mass for a Heaving Rectangular Strip 442

(2) Radiation Damping of a Heaving Rectangular Strip 444

Example 11.13: Radiation Damping Coefficient for a Heaving Rectangular Strip 445

11.7 Two-Dimensional Haskind Force Relationships 446
12. Wave-Induced Motions of Compliant Structures 453

12.1 Compliant Structures 453
12.2 Basic Mooring Configurations 455
 A. Taut Moorings 455
 Example 12.1: Tension in a SeaStar Tether 457
 B. Slack Moorings 458
 Example 12.2: Effective Spring Constant for Slack Line 461
 Example 12.3: Effective Spring Constant for a Barge Moored with Four Slack Lines 464

12.3 Soil-Structure Interactions 465
 A. Embedded Structures 468
 (1) Bending Deflection in the Plastic Zone 470
 (2) Bending Deflection in the Elastic Zone 471
 (3) Complete Bending Solution 471
 (4) Comparison of Analysis and Data 473
 B. Spread Footings – Gravity Structures 474

12.4 Motions of a Tension-Leg Platform (TLP) 476
 A. Tethers 478
 Example 12.4: Effective Spring Constants for a TLP 479
 B. Soil Reactions 479
 C. Wave-Induced Forces 480
 (1) Drag Force 481
 (2) Diffraction Force 482
 D. Hydrodynamic Coefficients for a Spar 483
 (1) Heaving Added Mass and Radiation Damping 484
 Example 12.5: Added-Mass and Radiation-Damping Coefficients for a Heaving Vertical Cylindrical Hull in Water of Finite Depth 486
 (2) Surging Added Mass and Radiation Damping 486
 E. Surging Motions in Regular Seas 489
 Example 12.6: Surging Motions of a TLP 491
 F. Surging Motions in Random Seas 495
 Example 12.7: Root-Mean-Square Surge Response of Motions of a TLP 496
 Example 12.8: Spectral Density of the Surge Response of Motions of a TLP 497

12.5 Motions of an Articulated-Leg Platform (ALP) 498
 Example 12.9: Wave-Induced Motions of an ALP 506

12.6 Motions of Flexible Towers 509
 A. Effective Spring Constants 511
 B. Analysis of the Motions of a Flexible Offshore Tower (FOT) 514
 (1) Swaying Motions of a FOT 515
 Example 12.10: First Modal Swaying Frequency of a FOT 517
 Example 12.11: First Modal Swaying Frequency of a Three-Panel FOT 518
Contents

(2) Bending Motions of a TRAP
Example 12.12: Deflection of a TRAP in a Design Sea
12.7 Closing Remarks

Appendices

- **A. Bessel Functions** 529
- **B. Runge-Kutta Solution of Differential Equations** 530
- **C. Green’s Theorem** 532
 - C1. Three-Dimensional Green’s Theorem 532
 - C2. Two-Dimensional Green’s Theorem 533
 - C3. Green’s Theorem Applied to an Irrotational Flow 533
- **D. Green’s Function** 534
 - D1. Three-Dimensional Green’s Function 534
 - (1) Three-Dimensional Flow Source 534
 - (2) Three-Dimensional Wave Source 536
 - D2. Two-Dimensional Green’s Function 536
- **E. Solutions of Laplace’s Equation** 537
 - E1. Cartesian Coordinates 538
 - E2. Cylindrical Coordinates 539
- **F. Fourier Transforms** 540
- **G. Lewis Sharp-Bilge Analysis** 541
- **H. Infinite-Frequency Added-Mass Expressions** 544
 - H1. Two-Dimensional Added Mass 544
 - (1) Motions in an Infinite Liquid 544
 - (2) Motions of a Rectangular Section in Liquid with a Free Surface 546
 - H2. Three-Dimensional Added Mass 547
 - (1) Flat Plate Motions in an Infinite Liquid 547
 - (2) Motions of a Sphere in an Infinite Liquid and beneath a Free Surface 547
 - H3. Frequency-Dependent Added Mass 548

References 549

Index 575
Preface

It has been more than three decades since my first book on ocean engineering, *Ocean Engineering Wave Mechanics*. My purpose in writing that book was to give ocean engineering students and ocean technologists an introduction to the mechanics of water waves, and to present and demonstrate the analytical techniques used in wave-structure interaction problems. Since the 1973 publication of that book, ocean technology has been one of the most rapidly advancing engineering fields. The purpose of this book is to present both fundamental and advanced techniques in the analyses of both water waves and wave-structure interactions. The classical analytical works in the areas of wave mechanics are discussed in detail so that the reader can follow the lines of thought of the masters who produced these classic analyses.

Most of the material presented herein is for readers with a basic education in applied mechanics, including fluid mechanics or hydraulics and applied mathematics. The material is presented so that the reader can immediately apply the various analytical techniques to problems of interest. To this end, examples are presented in each section. Certain topics, such as the cnoidal theory, are of an advanced analytical nature and, as such, are more appropriate for postgraduate education. Following these topics are examples designed to demonstrate the application of these advanced analytical methods.

I would like to express my thanks to Dr. David R. B. Kraemer of the University of Wisconsin, Platteville, for his help and advice during the preparation of much of this book. Dr. Kraemer’s expertise in computational techniques in fluid and applied mechanics and his willingness to share that expertise were of great value. In addition, my sincere appreciation goes to Mr. Jeffrey Cerquetti of Johnson, Mirmiran & Thompson, Inc. and Dr. Patrick J. Hudson of the Applied Physics Laboratory of Johns Hopkins University for their advice and expertise in numerous areas of hydrodynamics.

Two of my friends and former students at the U.S. Naval Academy have made my situation conducive to book writing. Those are Mr. Robert Murtha and Mr. Bernard Bailey. Each of these fine gentlemen knows how they have contributed.

A special thanks is given to Professor Jacek Mostwin of Johns Hopkins Medical Institutions. Because of his consideration and skills, I was able to complete this book.
My sincere appreciation is given to my long-time friends and colleagues, Dr. Ronald Gularte and Mrs. Alice Gularte, for proofreading the manuscript. They provided guidance and editorial comments that were invaluable.

Finally, I would like to express my appreciation to my dear friend and colleague, Professor Rameswar Bhattacharyya of the U.S. Naval Academy, for his suggestions and encouragement. It has been my good fortune to be able to work closely with Professor Bhattacharyya for more than thirty-eight years, and I have profited greatly from the experience.

Michael E. McCormick
Annapolis, Maryland
December 2008
Notation

General

\(a_w \)
added mass (kg)

\(a \)
cylindrical radius (m)

\(A_w \)
added-mass moment of inertia (N-m-s\(^2\)/rad)

\(A \)
area (m\(^2\))

\(b_{t,p,v} \)
linear radiation, power take-off, and viscous damping coefficients (N-s/m)

\(b \)
half-breadth and crest width (m)

\(b_v \)
nonlinear viscous damping coefficient (N-s\(^2\)/m\(^2\))

\(B \)
breadth of a structure into the page, or beam of a floating body (m)

\(c \)
celerity vector (m/s)

\(c_g \)
group velocity (m/s)

\(C_d \)
drag coefficient

\(D \)
diameter (m)

\(d \)
draft of a fixed or floating structure (m)

\(e \)
2.7182818 . . .

\(f \)
frequency (Hz)

\(F \)
force (N)

\(g \)
gravitational constant (\(\simeq \) 9.81 m/s\(^2\))

\(h \)
water depth (m)

\(H \)
traveling wave height (m)

\(H_0^{(1,2)}(\cdot) \)
Hankel function of the first and second kinds

\(H \)
standing wave height (m)

\(i \)
\((-1)^{1/2}\)

\(i,j,k \)
\(x,y,z \)-unit vectors

\(I_e \)
second moment of area with respect to the e-axis (m\(^4\))

\(I_e \)
body mass-moment of inertia with respect to the e-axis (N-m-s\(^2\)/rad)

\(I_n \)
modified Bessel function of the first kind

\(J_n(\cdot) \)
Bessel function of the first kind

\(K_C \)
Keulegan-Carpenter number

\(K_n(\cdot) \)
modified Bessel function of the second kind

\(K_r \)
refraction coefficient in eq. 6.85

\(K_R \)
reflection coefficient in eq. 6.23
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_S</td>
<td>shoaling coefficient in eq. 3.78</td>
</tr>
<tr>
<td>k</td>
<td>wave number, $2\pi/\lambda$ (1/m)</td>
</tr>
<tr>
<td>L</td>
<td>body length (m)</td>
</tr>
<tr>
<td>m</td>
<td>body mass (kg)</td>
</tr>
<tr>
<td>M</td>
<td>moment (N-m)</td>
</tr>
<tr>
<td>n</td>
<td>order of Bessel function and index number</td>
</tr>
<tr>
<td>n</td>
<td>normal unit vector</td>
</tr>
<tr>
<td>p</td>
<td>pressure (N/m2)</td>
</tr>
<tr>
<td>P</td>
<td>energy flux (N-m/s)</td>
</tr>
<tr>
<td>Q</td>
<td>volume flow rate (m3/s)</td>
</tr>
<tr>
<td>r</td>
<td>radial coordinate (m)</td>
</tr>
<tr>
<td>r</td>
<td>position vector (m)</td>
</tr>
<tr>
<td>R</td>
<td>radius (m)</td>
</tr>
<tr>
<td>Re_ℓ</td>
<td>Reynolds number based on length ℓ</td>
</tr>
<tr>
<td>s</td>
<td>local coordinate (m)</td>
</tr>
<tr>
<td>SPM</td>
<td>Shore Protection Manual (U.S. Army, 1984)</td>
</tr>
<tr>
<td>SWL</td>
<td>still-water level</td>
</tr>
<tr>
<td>t</td>
<td>time (s)</td>
</tr>
<tr>
<td>T</td>
<td>line tension (N)</td>
</tr>
<tr>
<td>T</td>
<td>wave period (s)</td>
</tr>
<tr>
<td>u,v,w</td>
<td>x,y,z-velocity components (m/s)</td>
</tr>
<tr>
<td>U</td>
<td>nominal speed (m/s)</td>
</tr>
<tr>
<td>V</td>
<td>velocity (m/s)</td>
</tr>
<tr>
<td>W</td>
<td>body weight (N)</td>
</tr>
<tr>
<td>x,y</td>
<td>inertial horizontal coordinates (m)</td>
</tr>
<tr>
<td>X,Y</td>
<td>local horizontal coordinates (m)</td>
</tr>
<tr>
<td>$Y_n(\cdot)$</td>
<td>Bessel function of the second kind</td>
</tr>
<tr>
<td>z</td>
<td>inertial vertical coordinate (m)</td>
</tr>
<tr>
<td>Z</td>
<td>local vertical coordinate (m)</td>
</tr>
<tr>
<td>\Re</td>
<td>real part of a quantity</td>
</tr>
<tr>
<td>\Im</td>
<td>imaginary part of a quantity</td>
</tr>
<tr>
<td>η</td>
<td>free-surface displacement (m)</td>
</tr>
<tr>
<td>θ</td>
<td>angular coordinate (radians, degrees)</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength (m)</td>
</tr>
<tr>
<td>μ</td>
<td>dynamic viscosity (N-s/m2)</td>
</tr>
<tr>
<td>ν</td>
<td>kinematic viscosity (m2/s)</td>
</tr>
<tr>
<td>ρ</td>
<td>mass density (kg/m3)</td>
</tr>
<tr>
<td>ϕ</td>
<td>velocity potential (m2/s)</td>
</tr>
<tr>
<td>ψ</td>
<td>two-dimensional stream function (m2/s)</td>
</tr>
<tr>
<td>ω</td>
<td>circular wave frequency (rad/s)</td>
</tr>
</tbody>
</table>

Subscripts

- **avg**: average value
- **o**: amplitude
- **max**: maximum value
- **0**: deep-water wave properties
Chapter 1

\[E(T_o) \] wave-energy spectral density (m^2/s)
\[F \] fetch (m, km)
\[F_{min} \] minimum fetch (m, km)
\[T_o \] modal period (s)
\[U \] wind speed (m/s, km/hr)
\[X_D \] developing length of a wind-generated sea (m, km)

Chapter 2

\[C_p \] pressure coefficient in Figure 2.11
\[f(t) \] see eq. 2.70
\[f_v \] vortex-shedding frequency (Hz)
\[F_B \] buoyant force (N)
\[F_r \] Froude number
\[j \] index number
\[L_{m,p} \] model and prototype lengths (m)
\[m,n \] indices
\[n_\zeta \] scale factor (\(\zeta = F, L, p, P, t, V \))
\[M_{+,,-} \] three-dimensional source and sink strengths (m^3/s)
\[M_{+,,-} \] line source and sink strengths (m^2/s)
\[N \] maximum index number
\[R_{oi} \] outer and inner diameters (m)
\[R,\beta,\Theta \] spherical coordinates
\[S_\ell \] Strouhal number based on length \(\ell \)
\[\hat{S} \] safety factor
\[V_0 \] upstream velocity (m/s)
\[\gamma \] volume (m^3)
\[\gamma \] weight density (N/m^3)
\[\Gamma \] circulation (m^2/s)
\[\sigma_{1,2,u} \] axial, hoop, and ultimate stresses (N/m^2)
\[\Phi \] three-dimensional velocity potential (m^3/s)
\[\Psi \] three-dimensional stream function (m^3/s)

Chapter 3

\[\alpha,\beta \] arbitrary phase angles in eqs. 3.12 and 3.13
\[C \] arbitrary constant
\[E \] total energy (N-m)
\[E_p \] potential energy (N-m)
\[E_k \] kinetic energy (N-m)
\[F_{A,B}(\lambda) \] wavelength functions in eq. 3.34
\[K_S \] shoaling coefficient
\[N \] sea-bed normal unit vector
\[P \] energy-flux vector (N-m/s)
\[T(t) \] time function in eq. 3.9
\[U,W \] standing-wave horizontal and vertical particle velocity components (m/s)
\[X(x) \] spatial function in eq. 3.9
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z(z)$</td>
<td>spatial function in eq. 3.9</td>
</tr>
<tr>
<td>ΔF</td>
<td>see eq. 3.35</td>
</tr>
<tr>
<td>ε</td>
<td>power-conversion efficiency</td>
</tr>
<tr>
<td>$\xi(x,t)$</td>
<td>translating horizontal displacement (m)</td>
</tr>
<tr>
<td>$\zeta(x,t)$</td>
<td>translating vertical displacement (m)</td>
</tr>
<tr>
<td>Φ</td>
<td>standing-wave velocity potential (m²/s)</td>
</tr>
<tr>
<td>Ψ</td>
<td>standing-wave stream function (m³/s)</td>
</tr>
</tbody>
</table>

Subscripts

- wc: water column

Chapter 4

- A: integration constant in eq. 4.93
- B: perturbation constant in eq. 4.94
- C: free-surface constant value (m)
- E': energy per crest width (N-m/m)
- $E()$: complete elliptic integral of the second kind
- f_j, F_j: see eqs. 4.77 and 4.78
- $K()$: complete elliptic integral of the first kind
- K: total energy per unit volume (N-m/m³)
- t: height of the trough above the sea (m)
- S: bottom coordinate ($= z + h$)
- U_R: Ursell parameter; see Figure 4.1
- U,W: Stokian horizontal and vertical velocity components (m/s)
- U_{con}: convective velocity (m/s)
- α: crest angle from the vertical (radians, degrees)
- Γ: free-surface function in eq. 4.88
- ε: perturbation constant in eqs. 4.8 and 4.9
- η: free-surface displacement from the wave trough (m)
- M: parameter
- ξ: horizontal particle convection length (m)

Subscripts

- b: breaking condition
- c: at a wave crest
- α: angular component
- R: radial component
- θ: properties at an origin of a coordinate system

Chapter 5

- a: wave amplitude (m)
- A: Weibull parameter in eq. 5.27
- A: generic spectral parameter in eq. 5.42
- A_o: coefficient in eq. 5.89
- B: Weibull parameter in eq. 5.27
Notation

- B: generic spectral parameter in eq. 5.42
- E: energy per free-surface area (N-m/m²)
- E: energy intensity (N-m/m)
- F: fetch (m, km)
- $G()$: spreading function in eq. 5.92
- I: maximum wave period index
- j: wave height index
- J: maximum wave height index
- M: dimensionless wave height ratio
- m: Weibull parameter in eq. 5.27
- m_H: shape factor in eq. 5.102
- m_T: shape factor in eq. 5.103
- m: generic spectral parameter in eq. 5.42
- n: generic spectral parameter in eq. 5.42
- $n_{i,j}$: number of observed waves corresponding to the index j
- N: expected number of observed waves
- $p()$: probability density function
- $P()$: cumulative frequency of occurrence
- $P()$: cumulative probability of occurrence
- R: radial coordinate from a wave crest (m)
- s: spreading parameter
- $S(T)$: wave spectral density (m²/s)
- t_D: duration (hours)
- $U_{10,19.5}$: wind speed at heights of 10 m and 19.5 m above the still-water level (km/hr)
- Z: arbitrary variable
- α: equivalent Mach angle in Figure 5.17 (radians, degrees)
- β: wind angle from onshore direction (radians, degrees)
- Γ_2: the gamma function evaluated at $(m+2)/m$
- δ: boundary layer thickness in Figure 5.16 (m)
- θ: angle from wind direction in the horizontal plane (radians, degrees)
- Θ: angle from true north (radians, degrees)

Subscripts

- avg: averaged
- B: Bretschneider spectral density
- DF: critical duration
- fds: fully developed sea
- h: at a finite water depth
- $H_{j,J}$: property of the j or J wave height
- I: wave component index
- J: generic wave spectral density
- J: direction index
- JON: JONSWAP spectral density
- LT: long-term
- rms: root-mean-square
- s: significant wave
Notation

- **z**: zero up-crossing period
- **\pm**: maximum and negative wave amplitudes

Chapter 6

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{I,R}$</td>
<td>incident and reflected amplitude coefficients</td>
</tr>
<tr>
<td>A,B</td>
<td>coefficients in eq. 6.132</td>
</tr>
<tr>
<td>b</td>
<td>wave crest width (m)</td>
</tr>
<tr>
<td>B_B</td>
<td>boundary value of amplitude function</td>
</tr>
<tr>
<td>$B_n(\cdot)$</td>
<td>generic Bessel function in eq. 6.99d</td>
</tr>
<tr>
<td>B</td>
<td>breadth of structure (m)</td>
</tr>
<tr>
<td>B_F</td>
<td>complex coefficient in eq. 6.111</td>
</tr>
<tr>
<td>B_G</td>
<td>complex coefficient in eq. 6.113</td>
</tr>
<tr>
<td>B_{FG}, B_{FBG}</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>line-integration path</td>
</tr>
<tr>
<td>C,D</td>
<td>coefficients in eq. 6.133</td>
</tr>
<tr>
<td>$C(u_L)$</td>
<td>Fresnel integral</td>
</tr>
<tr>
<td>e_n</td>
<td>energy per unit crest length over the nth step of the shoal in eq. 6.78</td>
</tr>
<tr>
<td>$E(\cdot)$</td>
<td>amplitude function in eq. 6.37</td>
</tr>
<tr>
<td>$E(\cdot)$</td>
<td>see eq. 6.163</td>
</tr>
<tr>
<td>$F(\cdot)$</td>
<td>arbitrary spatial function in eq. 6.101</td>
</tr>
<tr>
<td>$G(\cdot)$</td>
<td>arbitrary spatial function in eq. 6.103</td>
</tr>
<tr>
<td>f_μ</td>
<td>linearized friction factor in eq. 6.31</td>
</tr>
<tr>
<td>H'</td>
<td>pure shoaling wave height (m)</td>
</tr>
<tr>
<td>K</td>
<td>frequency parameter in eq. 6.50</td>
</tr>
<tr>
<td>$K^{(A,B)}$</td>
<td>see eq. 6.171</td>
</tr>
<tr>
<td>K_A</td>
<td>absorption coefficient in eq. 6.24</td>
</tr>
<tr>
<td>K_D</td>
<td>diffraction coefficient in eq. 6.23</td>
</tr>
<tr>
<td>t</td>
<td>length of Region B in Figure 6.7 (m)</td>
</tr>
<tr>
<td>m</td>
<td>slope of structural face</td>
</tr>
<tr>
<td>N</td>
<td>wall porosity</td>
</tr>
<tr>
<td>N</td>
<td>number of quasi-steps on the shoal in Figure 6.13</td>
</tr>
<tr>
<td>N</td>
<td>normal unit vector on the sea bed</td>
</tr>
<tr>
<td>$P(r)$</td>
<td>defined in eq. 6.99</td>
</tr>
<tr>
<td>$P_{0,S}$</td>
<td>points in Figure 6.21</td>
</tr>
<tr>
<td>r_S</td>
<td>relative position vector in Figure 6.21</td>
</tr>
<tr>
<td>R_a</td>
<td>runup (m)</td>
</tr>
<tr>
<td>s</td>
<td>arbitrary dependent variable in eq. 6.51</td>
</tr>
<tr>
<td>s,S</td>
<td>coordinates in eqs. 6.141 and 6.142 (m)</td>
</tr>
<tr>
<td>s</td>
<td>displacement vector in the direction of wave travel (m)</td>
</tr>
<tr>
<td>Q_{mn}</td>
<td>see eq. 6.169</td>
</tr>
<tr>
<td>$Q(x)$</td>
<td>separation of variables function in eq. 6.192</td>
</tr>
<tr>
<td>$S(u_L)$</td>
<td>Fresnel integral</td>
</tr>
<tr>
<td>S_{mn}</td>
<td>see eq. 6.165</td>
</tr>
<tr>
<td>$T(t)$</td>
<td>time function in separation-of-variables solution in eq. 6.46</td>
</tr>
<tr>
<td>$X(x)$</td>
<td>spatial function in separation-of-variables solution in eq. 6.46</td>
</tr>
<tr>
<td>$Y(y)$</td>
<td>separation-of-variables function in eq. 6.192</td>
</tr>
<tr>
<td>Y_0</td>
<td>alongshore distance over the deep-water contour in Figure 6.17 (m)</td>
</tr>
<tr>
<td>$Z(x,z)$</td>
<td>see eq. 6.181</td>
</tr>
</tbody>
</table>
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td>differential operator, defined in eq. 6.185</td>
</tr>
<tr>
<td>ε</td>
<td>angle between wave direction and wall (radians, degrees)</td>
</tr>
<tr>
<td>ε</td>
<td>phase angles defined in eq. 6.140 (radians, degrees)</td>
</tr>
<tr>
<td>θ</td>
<td>angle measured from the leeward side of the seawall (radians, degrees)</td>
</tr>
<tr>
<td>Θ</td>
<td>angle measured from the normal on the leeward side of the seawall (radians, degrees), as in Figure 6.21</td>
</tr>
<tr>
<td>Λ</td>
<td>alongshore component of the wavelength in eq. 6.20 (m)</td>
</tr>
<tr>
<td>µ</td>
<td>see eq. 6.160</td>
</tr>
<tr>
<td>ν</td>
<td>see eq. 6.161</td>
</tr>
<tr>
<td>σ</td>
<td>phase angle in eq. 6.37 (radians, degrees)</td>
</tr>
<tr>
<td>Q_{sed}</td>
<td>volume-rate of sediment transport</td>
</tr>
<tr>
<td>Σ_N</td>
<td>defined in eq. 6.80</td>
</tr>
<tr>
<td>φ</td>
<td>spatially dependent velocity potential (m²/s)</td>
</tr>
<tr>
<td>Φ</td>
<td>spatially and temporally dependent velocity potential (m²/s)</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>properties upwave of the shoal</td>
</tr>
<tr>
<td>b</td>
<td>properties downwave of the shoal (m³/s)</td>
</tr>
<tr>
<td>A</td>
<td>property in Region A</td>
</tr>
<tr>
<td>A_{absorbed}</td>
<td>absorbed property in Region A</td>
</tr>
<tr>
<td>B</td>
<td>property in Region B</td>
</tr>
<tr>
<td>C</td>
<td>property in Region C</td>
</tr>
<tr>
<td>D</td>
<td>diffraction properties</td>
</tr>
<tr>
<td>I</td>
<td>incident properties</td>
</tr>
<tr>
<td>m</td>
<td>summation index</td>
</tr>
<tr>
<td>R</td>
<td>reflected properties</td>
</tr>
<tr>
<td>T</td>
<td>transmitted properties</td>
</tr>
</tbody>
</table>

Chapter 7

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>slope-dependent coefficient in eq. 7.6</td>
</tr>
<tr>
<td>A</td>
<td>parameter in eq. 7.2</td>
</tr>
<tr>
<td>b</td>
<td>slope-dependent coefficient in eq. 7.7</td>
</tr>
<tr>
<td>B</td>
<td>parameter in eq. 7.3</td>
</tr>
<tr>
<td>C_{y,e}</td>
<td>constants associated with stresses</td>
</tr>
<tr>
<td>C_p</td>
<td>porosity factor in eq. 7.15, equal to (1 - \frac{\sqrt{\text{void}}}{\sqrt{\text{total}}})</td>
</tr>
<tr>
<td>D</td>
<td>local rate of energy dissipation (N\cdot m^{-1}\cdot s^{-1})</td>
</tr>
<tr>
<td>D_{50}</td>
<td>mean sediment diameter (m, cm, mm)</td>
</tr>
<tr>
<td>E_{1,2}</td>
<td>constants in eqs. 7.71 and 7.72</td>
</tr>
<tr>
<td>f_{\mu}</td>
<td>friction factor in eq. 7.58</td>
</tr>
<tr>
<td>H</td>
<td>pure shoaling wave height (m)</td>
</tr>
<tr>
<td>K</td>
<td>proportionality constant in eq. 7.41</td>
</tr>
<tr>
<td>m</td>
<td>slope of the sea bed</td>
</tr>
<tr>
<td>P_e</td>
<td>energy flux line intensity in eq. 7.51 (N/s)</td>
</tr>
<tr>
<td>R_u</td>
<td>runup in Figure 7.1 (m)</td>
</tr>
<tr>
<td>[s]</td>
<td>equivalent radiation stress matrix (N/m)</td>
</tr>
<tr>
<td>S_{XX,YY}</td>
<td>equivalent components of radiation stress in eq. 7.29 (N/m)</td>
</tr>
<tr>
<td>S_{XX}</td>
<td>principal component of radiation stress in eq. 7.20 (N/m)</td>
</tr>
</tbody>
</table>
Notation

- S_{YY}: transverse component of radiation stress in eq. 7.23 (N/m)
- $[S]$: radiation stress matrix (N/m)
- T_e: function of the eddy viscosity in eq. 7.54 (N/m)
- U, V, W: particle velocity components with respect to the wave direction in Figure 7.7 (m/s)
- V: velocity vector in Figure 7.7
- V_{l}: alongshore (or longshore) velocity in Figure 7.6 (m/s)
- x_s: maximum set-up in eq. 7.48 (m)
- X, Y, Z: wave coordinate system in Figure 7.7 (m)
- γ: experimental proportionality constant in eq. 7.44
- κ: parametric constant in eq. 7.49 (1/m)
- μ_e: eddy viscosity in eq. 7.59 (N-s/m²)
- ξ: surf similarity parameter in eq. 7.9
- τ_y: time-averaged bed shear stress (N/m²)
- τ_{sys}: radiation stress (N/m²)
- τ_e: effective eddy shear stress in eq. 7.61 (N/m²)
- x: x/x_b
- F: momentum flux in eq. 7.35 (N/m)

Subscripts

- b: breaking condition
- ts: longshore property
- s: surf-zone conditions
- S: maximum set-up
- sed: sediment property
- ε: eddy viscosity property

Chapter 8

- B_T: cap width of the trunk (m)
- f: expected number of failures
- F_r: Froude number
- H': pure shoaling wave height (m)
- h_T: height of the breakwater (m)
- k_A: layer coefficient in eq. 8.5
- K_{DT}: stability coefficient in eq. 8.1
- $L_{0,1,\ldots}$: alongshore separation distance between groins 0 and 1, 1 and 2, \ldots (m)
- L_g: groin length in Figure 8.2 (m)
- m: slope of the sea bed
- m: shape parameter in eq. 8.14
- n: number of primary stone layers
- n_L: length scale factor in eq. 8.11
- n_t: time scale factor in eq. 8.13
- n_v: velocity scale factor in eq. 8.13
- N: number of cap stones of the breakwater trunk
- N: number of armor stones of a breakwater
Notation

\(N_{100} \) expected number of observed waves over 100 years
\(P \) probability of failure (= 1 – \(R \), as in Example 8.4)
\(Q_{sed} \) volume rate of sediment transport (m³/s)
\(r_T \) total thickness of the primary armor stone layer (m)
\(R \) reliability, as defined in Example 8.4
\(V_\ell \) alongshore (or longshore) velocity in Figure 8.2 (m/s)
\(W_{1T} \) armor stone weight (N)
\(W_{2T} \) shield stone weight (N)
\(W_{3T} \) foundation stone weight (N)
\(W_{4T} \) toe stone weight (N)
\(\rho_{stone} \) mass density of the stone material (kg/m³)
\(\varepsilon \) angle of the breakwater weather face with respect to the horizontal (radians, degrees)

Subscripts

\(D \) design condition
\(\text{avg} \) average value
\(\text{max} \) maximum value
\(\text{ref} \) reference value
\(\text{rms} \) root-mean-square value
\(T \) breakwater trunk properties

Chapter 9

\(a \) semi-length of a Lewis form (m)
\(a_e \) radius of a circle or circular cylinder (m)
\(A \) semi-length of a rectangular caisson (m)
\(A_d \) projected area (m²)
\(A_m \) see eq. 9.141
\(A_1 \) Lewis transformation constant (m²)
\(A_3 \) Lewis transformation constants (m⁴)
\(b \) semi-width of a Lewis form (m)
\(B \) semi-width of a rectangular caisson (m)
\(B_{mn} \) see eq. 9.141
\(B_1 \) \(2Y_{\text{max}}|a=1 \)
\(C \) contour enclosing an area \(S \) (m)
\(C_i \) inertial coefficient in eq. 9.26
\(C_d \) drag coefficient
\(C_M \) mass coefficient defined in Figure 9.17 and eq. 9.79 for a circular caisson
\(C_M \) mass coefficient defined in eq. 9.80 for a rectangular caisson
\(f(\cdot) \) arbitrary function
\(E_m \) constant associated with the index \(m \) in eq. 9.63
\(F_d \) drag force (N)
\(F_w \) wave-induced pressure force on the wall (N)
\(F_{\text{W}} \) wave-induced pressure force on the wall, excluding higher-order terms in \(\eta_w \) in eq. 9.5 (N)
\(F^* \) non-dimensional force defined in eq. 9.151
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{F}_{mn}</td>
<td>Fourier series in eq. 9.111</td>
</tr>
<tr>
<td>$G_\gamma(z)$</td>
<td>see eq. 9.138</td>
</tr>
<tr>
<td>\hat{u}</td>
<td>unit vector in the radial direction</td>
</tr>
<tr>
<td>K_d</td>
<td>drag parameter in eq. 9.173</td>
</tr>
<tr>
<td>K_i</td>
<td>inertial parameter in eq. 9.175</td>
</tr>
<tr>
<td>K_n</td>
<td>depth-draft parameter in eq. 9.108</td>
</tr>
<tr>
<td>K_C</td>
<td>Keulegan-Carpenter number in eq. 9.45</td>
</tr>
<tr>
<td>ℓ</td>
<td>length of a cross-brace (m)</td>
</tr>
<tr>
<td>N_M</td>
<td>expected number of waves over M years</td>
</tr>
<tr>
<td>$p()$</td>
<td>wave-height probability density function in eq. 9.180 (1/m)</td>
</tr>
<tr>
<td>p_w</td>
<td>wave-induced wall pressure (N/m2)</td>
</tr>
<tr>
<td>P</td>
<td>point in Figure 9.27</td>
</tr>
<tr>
<td>P_{1m}</td>
<td>see eqs. 9.109 and 9.110</td>
</tr>
<tr>
<td>$P()$</td>
<td>wave-height probability in eq. 9.179</td>
</tr>
<tr>
<td>$q(z)$</td>
<td>see eq. 9.94</td>
</tr>
<tr>
<td>$Q(z)$</td>
<td>empirical function in eq. 9.94</td>
</tr>
<tr>
<td>$Q(\beta)$</td>
<td>separation of variables function in Section 9.2H(3)</td>
</tr>
<tr>
<td>$R(r)$</td>
<td>separation of variables function in Section 9.2H(3)</td>
</tr>
<tr>
<td>S</td>
<td>area of a fluid enclosed by a contour C (m2)</td>
</tr>
<tr>
<td>$S(f)$</td>
<td>wave spectral density (m2-s)</td>
</tr>
<tr>
<td>$T(f)$</td>
<td>transfer function</td>
</tr>
<tr>
<td>u_{max}</td>
<td>horizontal particle motion at a wave crest (m/s)</td>
</tr>
<tr>
<td>U_R</td>
<td>Ursell parameter or number in eq. 9.54</td>
</tr>
<tr>
<td>V_0</td>
<td>body velocity (m/s)</td>
</tr>
<tr>
<td>V_∞</td>
<td>free-stream velocity at $x = \pm \infty$ (m/s)</td>
</tr>
<tr>
<td>ν_{disp}</td>
<td>displaced volume (m3)</td>
</tr>
<tr>
<td>$w_{\xi,z}$</td>
<td>complex potentials in ξ- and z-planes (m2/s)</td>
</tr>
<tr>
<td>X</td>
<td>x at a</td>
</tr>
<tr>
<td>X,Y,Z</td>
<td>inertial coordinates on the sea bed (m)</td>
</tr>
<tr>
<td>Y</td>
<td>y at a (m)</td>
</tr>
<tr>
<td>z</td>
<td>$x + iy$ (m)</td>
</tr>
<tr>
<td>$Z(\xi)$</td>
<td>separation of variables function in Section 9.2H(3)</td>
</tr>
<tr>
<td>Z_w</td>
<td>depth of the center of pressure (m)</td>
</tr>
<tr>
<td>α</td>
<td>eigenvalue in eq. 9.113</td>
</tr>
<tr>
<td>β</td>
<td>angle from the direction of motion in the x-y plane (radians, degrees)</td>
</tr>
<tr>
<td>γ</td>
<td>angle measured positively from the ξ-axis in the ξ-plane, and angle measured from the wave direction to a ray in Figure 9.28 (radians, degrees)</td>
</tr>
<tr>
<td>Γ_m</td>
<td>see eq. 9.141</td>
</tr>
<tr>
<td>$\delta_{\alpha\gamma}$</td>
<td>Kronecker delta in eq. 9.140</td>
</tr>
<tr>
<td>ε_m</td>
<td>Neumann’s symbol</td>
</tr>
<tr>
<td>ξ</td>
<td>$\xi + ic$ (m)</td>
</tr>
<tr>
<td>κ</td>
<td>dispersion parameter in eq. 9.117</td>
</tr>
<tr>
<td>$\Lambda(ka)$</td>
<td>MacCam-Fuchs amplitude function in eq. 9.72</td>
</tr>
<tr>
<td>ν</td>
<td>kinematic viscosity (m2/s)</td>
</tr>
<tr>
<td>Φ</td>
<td>displacement potential in eq. 9.99</td>
</tr>
<tr>
<td>$\sigma(ka)$</td>
<td>MacCam-Fuchs phase angle in eq. 9.73</td>
</tr>
</tbody>
</table>
Notation

Subscripts

- **B** B Bretschneider wave spectral density
- **brace** property on a cross-brace
- **cp** property at the center of pressure
- **CL** property on the centerline of the cylinder
- **G** Garrett force and moment
- **I** incident wave property
- **j,k,l** caisson indices
- **m,n** summation indices
- **MF** MacCamy-Fuchs property
- **PM** Pierson-Moskowitz wave spectral density
- **S** scattered wave property
- **s** significant wave property
- **w** property at the wall
- **X,Y** properties in the x- and y-directions
- **□** properties associated with the rectangular caisson

Chapter 10

- **a_p** damping plate radius in Figure 10.10 (m)
- **ALP** articulated-leg platform
- **A_d** projected area for drag (m²)
- **A_wp** waterplane area for drag (m²)
- **b_c** heaving critical damping coefficient (N-s/m)
- **b_p** power take-off damping coefficient (N-s/m)
- **b_r** radiation damping coefficient (N-s/m)
- **b_v** equivalent linear viscous damping coefficient (N-s/m)
- **b_z** combine damping coefficient (N-s/m) in eq. 10.25
- **b_n** nonlinear viscous damping coefficient (N-s²/m²)
- **C** constant in eq. 10.55
- **C_d** drag coefficient
- **H(ω)** amplitude response function in eq. 10.51
- **H(ω)*** complex conjugate of (ω)
- **k_s** spring constant (N/m)
- **l_s** relaxed mooring line length (m)
- **N** power of the velocity in eq. 10.1
- **N** number of mooring lines
- **N_M** number of observations over **M** years
- **P(Z)** probability density (1/m)
- **P(·)** probability of an event
- **P_z** power absorbed (N-m/s)
- **S_f(T)** wave spectral density in eq. 10.55 (m²-s)
- **S_x(T)** response spectral density in eq. 10.55 (m²-s)
- **T** time interval (s)
- **T_S** mooring line tension (N)
- **T_{nc}** natural heaving period (s)
- **V_z** heaving velocity vector of a body (m/s)
- **w_cw** capture width in eq. 10.46 (m)
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z(\omega))</td>
<td>frequency-dependent heaving amplitude (m)</td>
</tr>
<tr>
<td>(\alpha_z)</td>
<td>phase angle between the incident wave and the wave-induced force (radians, degrees)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.5772157 (Euler’s constant)</td>
</tr>
<tr>
<td>(\delta d)</td>
<td>change in draft (m)</td>
</tr>
<tr>
<td>(\Delta_z)</td>
<td>damping ratio in eq. 10.21</td>
</tr>
<tr>
<td>(\varepsilon_z)</td>
<td>phase angle between the heaving response and the wave-induced force (radians, degrees)</td>
</tr>
<tr>
<td>(\omega_{nz})</td>
<td>natural heaving frequency (rad/s)</td>
</tr>
<tr>
<td>(\omega_{1,2})</td>
<td>bounds of the half-power frequency bandwidth (rad/s)</td>
</tr>
</tbody>
</table>

Subscripts

- ABS absolute value
- avg averaged property
- b damping property
- B Bretschneider spectral density
- dyn dynamic pressure
- j amplitude number
- J generic spectral density
- n natural frequency property
- N wave index in eq. 10.60
- rms root-mean-square value
- S property of mooring line spring effect
- \(x,y,z \) motion directions

Chapter 11

- \(a \) radius of a circle (m)
- \(a_w \) total added mass of a floating body (kg)
- \(A \) area in eq. 11.185 (m²)
- \(A_w \) added-mass moment of inertia (N-m-s²/rad)
- \(A_0 \) Lewis parameter (m⁰)
- \(A_1 \) Lewis parameter (m²)
- \(A_2 \) Lewis parameter (m³)
- \(A_3 \) Lewis parameter (m⁴)
- \(b_Z \) linear damping coefficient for heaving motions (N-s/m)
- \(b_wZ \) quasi-linear damping term in eqs. 11.82 and 11.84 (N-s/m)
- \(b_\xi \) waterline semi-breadth of a fixed or floating body at a distance \(\xi \) from the center of gravity (m)
- \(B \) center of buoyancy
- \(B' \) displaced center of buoyancy
- \(B_\eta \) linear damping coefficient for pitching motions (N-m-s/rad)
- \(B_\xi(\xi) \) breadth of a body at \(\xi \) (m)
- \(c \) linear restoring coefficient (N/m)
- \(c(\cdot) \) cosine integral
- \(C \) angular restoring coefficient (N-m/rad)
- \(C_{area} \) sectional area coefficient in eq. 11.43
- \(C_{max} \) (length) maxima coefficient in eq. 11.42
Notation

\(C_{SF} \) scale factor in eq. 11.40 when \(a = 1 \)
\(C_{SF,a} \) scale factor in eq. 11.40 when \(a \neq 1 \)
\(C_{smith} \) Smith correction factor in eq. 11.63b
\(d,e,f \) angular coupling terms in eq. 11.15 (see Table 11.1)
\(d_\xi \) draft at \(\xi \) (m)
\(D_1 \) diameter of a semicircular section at \(\xi \) (m)
\(D_{E,F} \) linear coupling terms in eq. 11.16 (see Table 11.1)
\(f() \) see eqs. 11.96 through 11.98
\(F(k) \) see eq. 11.159
\(F_a \) inertial reaction force in eq. 11.29 (N)
\(F_B \) buoyant force (N)
\(F_t \) radiation damping force in eq. 11.31 (N)
\(F_W \) total wave force in eq. 11.25 (N)
\(g() \) see eqs. 11.96 through 11.98
\(G \) center of gravity
\(G_M \) metacentric height (m)
\(k_2 \) shape parameter in eq. 11.144
\(k_4 \) frequency coefficient in Table 11.3
\(K \) keel
\(I_{x,y} \) second moment of area with respect to the \(x \)- or \(y \)-axis (m\(^4\))
\(L_{i,j} \) operators defined in eqs. 11.113 through 11.116, where \(i = 1,2 \) and \(j = 1,2 \)
\(L \) waterplane ship length (m)
\(\ell_{aft} \) distance from stern to \(G \) in the waterplane (m)
\(\ell_{fwd} \) distance from the bow to \(G \) in the waterplane (m) pitching motions (N-m-s/rad)
\(\ell \) freeboard of a floating body (m)
\(M \) metacenter
\(M_s \) two-dimensional source strength (m\(^2\)/s)
\(M_t \) inertial reaction moment in eq. 11.30 (N-m)
\(M_t \) radiation damping moment in eq. 11.31 (N-m)
\(M_W \) total wave moment in eq. 11.26 (N-m)
\(O \) origin of the ship coordinate system, \(X,Y,Z \)
\(P \) point on the strip in Figure 11.5
\(P \) point on the strip in Figure 11.24a
\(r \) radius of a circle (m)
\(r,\beta \) polar coordinates in the \(Y-Z \) plane, as in Figures 11.7b, 11.7c, and 11.12
\(R_Z \) amplitude ratio in eqs. 11.88 and 11.89
\(R_\xi \) radius of a semicircular section at \(\xi \) (m)
\(si() \) sine integral
\(s \) curvilinear coordinate in eq. 11.185 (m)
\(s_o \) amplitude in eq. 11.178 (m) \(S(Y,Z,t) \) strip envelope geometry in Figure 11.22 (m)
\(S_\xi \) strip area at \(\xi \) (m\(^2\))
\(S_{body} \) spatial portion of strip envelope geometry in eq. 11.178 (m)
\(T_e \) period of encounter (s)
\(U \) ship’s forward speed (m/s)
\(V_w(t) \) vertical speed of the free surface (m/s)
\(V_z \) heaving body speed (m/s)
\(V_{wz} \) vertical water particle velocity (m/s)
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{w\eta}$</td>
<td>vertical water particle velocity at $z = \eta$ (m/s)</td>
</tr>
<tr>
<td>w_Z</td>
<td>complex velocity potential in eq. 11.51</td>
</tr>
<tr>
<td>x,y,z</td>
<td>coordinate system attached to the calm-water free-surface (m)</td>
</tr>
<tr>
<td>X,Y,Z</td>
<td>coordinate system at the center of gravity of a body (m)</td>
</tr>
<tr>
<td>X_B</td>
<td>see Figure 11.1</td>
</tr>
<tr>
<td>Y_{max}</td>
<td>maximum half-breadth of a Lewis form (m)</td>
</tr>
<tr>
<td>Y_{ξ}</td>
<td>half-breadth at ξ (m)</td>
</tr>
<tr>
<td>W</td>
<td>body weight (N)</td>
</tr>
<tr>
<td>x</td>
<td>$x + iy$</td>
</tr>
<tr>
<td>z</td>
<td>iz in eq. 11.49 and Figure 11.10b</td>
</tr>
<tr>
<td>Z_Z</td>
<td>heaving magnification factor in eq. 11.140</td>
</tr>
<tr>
<td>Z_α</td>
<td>pitching magnification factor in eq. 11.141</td>
</tr>
<tr>
<td>Z_o</td>
<td>amplitude of vertical body motion (m)</td>
</tr>
<tr>
<td>Z_{max}</td>
<td>maximum half-height of a Lewis form (m)</td>
</tr>
<tr>
<td>Z_o</td>
<td>source location on the vertical axis in Figure 11.23 (m)</td>
</tr>
<tr>
<td>Z_{ref}</td>
<td>reference draft in eq. 11.89 (m)</td>
</tr>
<tr>
<td>Z_{stat}</td>
<td>static displacement in eq. 11.131</td>
</tr>
<tr>
<td>Z_{ξ}</td>
<td>half-height at ξ (m)</td>
</tr>
<tr>
<td>α</td>
<td>angular coordinate measured from the negative Z (or z) direction (radians, degrees)</td>
</tr>
<tr>
<td>γ</td>
<td>angular coordinate in Figure 11.7 (radians, degrees)</td>
</tr>
<tr>
<td>ΔZ</td>
<td>damping ratio for heaving motions</td>
</tr>
<tr>
<td>Δ_α</td>
<td>damping ratio for pitching motions</td>
</tr>
<tr>
<td>ε,e</td>
<td>complex variables Figure 11.7a</td>
</tr>
<tr>
<td>ε_Z</td>
<td>phase angle between the wave-induced force and the heaving motions (radians, degrees)</td>
</tr>
<tr>
<td>φ</td>
<td>two-dimensional velocity potential (m²/s)</td>
</tr>
<tr>
<td>φ_{zd}</td>
<td>velocity potential for a two-dimensional source (m²/s)</td>
</tr>
<tr>
<td>φ_s</td>
<td>velocity potential for a two-dimensional point source (m²/s)</td>
</tr>
<tr>
<td>φ_{ξ}</td>
<td>two-dimensional velocity potential in eq. 11.57 (m²/s)</td>
</tr>
<tr>
<td>Φ_S</td>
<td>spatial potential in eq. 11.175 (m²/s)</td>
</tr>
<tr>
<td>χ</td>
<td>rolling angular displacement measured from the y-axis (radians, degrees)</td>
</tr>
<tr>
<td>ω_e</td>
<td>circular frequency of encounter (rad/s)</td>
</tr>
<tr>
<td>r'</td>
<td>indicating per unit length</td>
</tr>
<tr>
<td>α_f</td>
<td>phase angle between the wave-induced force and the wave in eq. 11.101 (radians, degrees)</td>
</tr>
<tr>
<td>α_M</td>
<td>phase angle between the wave-induced moment and the wave in eq. 11.106 (radians, degrees)</td>
</tr>
<tr>
<td>ε_θ</td>
<td>phase angle between the wave-induced moment and the pitching motions (radians, degrees)</td>
</tr>
<tr>
<td>ζ</td>
<td>$\varepsilon + i\xi$ in Figure 11.7a</td>
</tr>
<tr>
<td>$\zeta(t)$</td>
<td>vertical displacement of a strip (m)</td>
</tr>
<tr>
<td>ζ</td>
<td>$i\xi$ in eq. 11.49 and Figure 11.10a</td>
</tr>
<tr>
<td>θ</td>
<td>pitching angular deflection measured about the y-axis (radians, degrees)</td>
</tr>
<tr>
<td>Θ</td>
<td>trim angle in eq. 11.70 (radians, degrees)</td>
</tr>
<tr>
<td>ξ</td>
<td>distance from G to strip (m)</td>
</tr>
<tr>
<td>σ</td>
<td>yawing angular displacement measured about the z-axis (radians, degrees)</td>
</tr>
</tbody>
</table>