Contents

Preface xv
Acknowledgments xix
How to Use This Book xxi

1 Overview of Ship-Shaped Offshore Installations 1
 1.1 Historical Overview of Offshore Structure Developments 1
 1.1.1 Early History 1
 1.1.2 History from World War II to the Early 1970s 1
 1.1.3 History after the Early 1970s 2
 1.2 Process of Offshore Oil and Gas Developments 3
 1.3 System Concepts for Deep- and Ultradeep-Water Field Developments 4
 1.3.1 Semisubmersibles 5
 1.3.2 Spars 6
 1.3.3 Tension Leg Platforms 7
 1.3.4 Ship-Shaped Offshore Units 7
 1.4 A Brief History of the FPSO Installations 9
 1.5 Trading Tankers versus Ship-Shaped Offshore Units 13
 1.6 New Build versus Tanker Conversion 15
 1.7 Layout and General Arrangement of FPSOs 16
 1.7.1 Deck Area and General Arrangement 16
 1.7.2 Layout 16
 1.7.3 Relationships between Principal Dimensions 19
 1.7.4 Double-Hull Arrangements 22
 1.7.5 Tank Design and Arrangements 22
 1.8 Longitudinal Strength Characteristics of FPSO Hulls 23
 1.9 Drawings of a Hypothetical FPSO 24
 1.10 Aims and Scope of This Book 28
 References 29

2 Front-End Engineering 31
 2.1 Introduction 31
 2.2 Initial Planning and Contracting Strategies 32
 2.3 Engineering and Design 33
 2.4 Principal Aspects Driving Project and Vessel Costs 34
Table of Contents

2.5 Selection of Storage, Production, and Offloading Capabilities 34
2.6 Site-Specific Metocean Data 35
2.7 Process Facility Design Parameters 36
2.8 Limit-State Design Requirements 36
2.9 Risk-Assessment Requirements 37
2.10 Project Management 38
2.11 Post-Bid Schedule and Management 39
2.12 Building Material Issues: Yield Stress 39
2.13 Building Material Issues: Fracture Toughness 41
2.14 Hull Structural Scantling Issues 42
2.15 Action-Effect Analysis Issues 43
2.16 Fatigue Design Issues 44
2.17 Hydrodynamic Impact-Pressure Action Issues: Sloshing, Slamming, and Green Water 45
2.18 Vessel Motion and Station-Keeping Issues 45
2.19 Topsides Design Issues 46
2.20 Mooring System Design Issues 47
2.21 Export System Design Issues 47
2.22 Corrosion Issues 48
2.23 Accommodation Design Issues 48
2.24 Construction Issues 49
2.25 Equipment Testing Issues 49
2.26 Towing Issues 50
2.27 Field Installation and Commissioning Issues 50
2.28 Inspection and Maintenance Issues 51
2.29 Regulations and Classing Issues 52
References 53

3 Design Principles, Criteria, and Regulations 55

3.1 Introduction 55
3.2 Structural Design Principles 55
 3.2.1 Working Stress Design 56
 3.2.2 Limit-State Design 56
 3.2.3 Critical Buckling Strength Design 57
 3.2.4 Comparison among the Three Design Methods 60
3.3 Limit-State Criteria for Structural Design and Strength Assessment 65
3.4 Probabilistic Format versus Partial Safety Factor Format 65
 3.4.1 Probabilistic Format 65
 3.4.2 Partial Safety Factor Format 67
 3.4.3 Considerations Related to Safety Factors 68
3.5 Unified Design Requirements for Trading Tanker Hull Structures 71
3.6 Design Principles for Stability 74
3.7 Design Principles for Towing and Station-Keeping 74
3.8 Design Principles for Vessel Motions 75
3.9 Design Principles for Safety, Health, and the Environment 75
 3.9.1 Design Principles for Safety 75
 3.9.2 Design Principles for Health 77
 3.9.3 Design Principles for the Environment 77
Table of Contents

4 Environmental Phenomena and Application to Design 82

4.1 Introduction 82
4.2 Environmental Data 83
4.3 Waves 84
 4.3.1 UKOOA FPSO Design Guidance Notes for UKCS Service 85
 4.3.2 American Petroleum Institute Recommended Practices 86
 4.3.3 Det Norske Veritas Classification Notes 86
4.4 Winds 88
4.5 Water Depths and Tidal Levels 91
4.6 Currents 91
4.7 Air and Sea Temperatures 93
4.8 Snow and Icing 93
4.9 Marine Growth 95
4.10 Tank Sloshing 96
 4.10.1 Fundamentals 96
 4.10.2 Practices for Sloshing Assessment 96
 4.10.3 Measures for Sloshing Risk Mitigation 99
4.11 Bow Slamming 99
 4.11.1 Fundamentals 99
 4.11.2 Practices for Bow-Slamming Assessment 99
 4.11.3 Measures for Bow-Slamming Risk Mitigation 100
4.12 Green Water 100
 4.12.1 Fundamentals 100
 4.12.2 Practices for Green-Water Assessment 101
 4.12.3 Measures for Green-Water Risk Mitigation 102
4.13 Considerations Related to the Return Period 103
4.14 Wave Energy Spectra Expressions 105
 4.14.2 The JONSWAP Spectrum 106
 4.14.3 Directional Wave Spectra 106
4.15 Design Basis Environmental Conditions 107
References 107

5 Serviceability Limit-State Design ... 111

5.1 Introduction 111
5.2 Design Principles and Criteria 112
5.3 Practices for Actions and Action-Effects Analysis 113
5.4 Elastic Deflection Limits: Under Quasistatic Actions 114
 5.4.1 Support Members 114
 5.4.2 Plates between Support Members 118
5.5 Elastic Buckling Limits 118
 5.5.1 Elastic Plate Buckling 120
 5.5.2 Elastic Stiffener Web Buckling 123
 5.5.3 Elastic Tripping of Stiffener 125
 5.5.4 Elastic Stiffener Flange Buckling 128
5.6 Permanent Set Deflection Limits: Under Impact-Pressure Actions 128
 5.6.1 Plates between Support Members 129
 5.6.2 Longitudinally Stiffened Panels between Transverse Frames 131
 5.6.3 Cross-Stiffened Plate Structures 132
 5.6.4 Illustrative Examples 133
5.7 Intact Vessel Stability 134
5.8 Vessel Station-Keeping 137
5.9 Vessel Weathervaning and Heading Control 139
5.10 Vessel Motion Exceedance 140
5.11 Vibration and Noise 141
5.12 Mooring Line Vortex-Induced Resonance Oscillation 143
5.13 Corrosion Wastage 145
References 145

6 Ultimate Limit-State Design 148
 6.1 Introduction 148
 6.2 Design Principles and Criteria 148
 6.3 Actions and Action-Effects Analysis 150
 6.4 Structural Component Configuration 151
 6.5 Ultimate Strength of Plates 153
 6.5.1 Fundamentals 153
 6.5.2 Closed-Form Expressions 154
 6.5.3 Analytical Methods 159
 6.5.4 Semianalytical Methods 164
 6.5.5 Nonlinear Finite-Element Methods 166
 6.5.6 Illustrative Examples 168
 6.6 Ultimate Strength of Stiffened Plate Structures 168
 6.6.1 Fundamentals 168
 6.6.2 Closed-Form Expressions 173
 6.6.3 Analytical Methods 173
 6.6.4 Semianalytical Methods 175
 6.6.5 Nonlinear Finite-Element Methods 177
 6.6.6 Illustrative Examples 180
 6.7 Ultimate Strength of Vessel Hulls 182
 6.7.1 Fundamentals 182
 6.7.2 Closed-Form Expressions 182
 6.7.3 Progressive Hull Collapse Analysis: Idealized Structural Unit Method 185
 6.7.3.1 Background of Idealized Structural Unit Method 185
 6.7.3.2 ISUM Structural Modeling 187
 6.7.3.3 ISUM Plate Element 188
 (1) Nodal Forces and Nodal Displacements 189
 (2) Strain versus Displacement Relationship 189
 (3) Stress versus Strain Relationship 191
 (4) Tangent Stiffness Equation 192
 (5) Displacement (Shape) Function 193
 (6) Failure State Considerations 194
 (7) Post-Ultimate Strength Behavior 195
 (8) Benchmark Study of the Plate Element 195
Contents

6.7.3.4 ISUM Beam-Column Element 195
(1) Nodal Forces and Nodal Displacements 197
(2) Strain versus Displacement Relationship 197
(3) Stress versus Strain Relationship 197
(4) Displacement (Shape) Function 198
(5) Tangent Stiffness Equation 198
(6) Failure State Considerations 199
(7) Post-Ultimate Strength Behavior 199
(8) Benchmark Study of the Beam-Column Element 200

6.7.3.5 Illustrative Examples 201
(1) Test Hull Models under Vertical Bending 201
(2) An FPSO Hull under Vertical Bending 204
(3) A Shuttle Tanker Hull under Combined Vertical and Horizontal Bending 208

References 215

7 Fatigue Limit-State Design ... 217
7.1 Introduction 217
7.2 Design Principles and Criteria 218
 7.2.1 Cyclic Stress Ranges 221
 7.2.2 S–N Curves 223
 7.2.3 Fatigue Damage Accumulation 225
7.3 Practices for Spectral-Analysis-Based FLS Design 226
7.4 Seakeeping Analysis 232
7.5 Stress Range Transfer Functions 236
7.6 Global Structural Analysis 237
7.7 Local Structural Analysis and Hot Spot Stress Calculations 238
 7.7.1 Definition of Hot Spot Stress 238
 7.7.2 Finite-Element Analysis Modeling 241
7.8 Selection of S–N Curves 243
7.9 Fatigue Damage Calculations 245
7.10 High-Cycle Fatigue versus Low-Cycle Fatigue 250
7.11 Time-Variant Fatigue Crack Propagation Models 250
References 254

8 Accidental Limit-State Design ... 257
8.1 Introduction 257
8.2 Design Principles and Criteria 257
8.3 Damaged Vessel Stability: Accidental Flooding 259
8.4 Collisions 261
 8.4.1 Fundamentals 261
 8.4.2 Practices for Collision Assessment 263
 8.4.3 Nonlinear Finite-Element Modeling Techniques 265
 8.4.4 Dynamic Material Properties 271
 8.4.5 Illustrative Examples 274
8.5 Dropped Objects 277
 8.5.1 Fundamentals 277
 8.5.2 Ultimate Strength Characteristics of Dented Plates 281
 8.5.2.1 Under Axial Compressive Loads 281
 8.5.2.2 Under Edge Shear Loads 287

References 293

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.3</td>
<td>Closed-Form Expressions for Ultimate Strength of Dented Plates</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>8.5.3.1 Under Axial Compressive Loads</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>8.5.3.2 Under Edge Shear Loads</td>
<td>296</td>
</tr>
<tr>
<td>8.6</td>
<td>Fire</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>8.6.1 Fundamentals</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>8.6.2 Practices for Fire Assessment</td>
<td>297</td>
</tr>
<tr>
<td>8.7</td>
<td>Gas Explosion</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>8.7.1 Fundamentals</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>8.7.2 Practices for Gas Explosion Action Analysis</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>8.7.2.1 Prescriptive Methods</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>8.7.2.2 Probabilistic Methods</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td>8.7.3 Practices for Gas Explosion Consequence Analysis</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>8.7.4 Illustrative Examples</td>
<td>303</td>
</tr>
<tr>
<td>8.8</td>
<td>Progressive Collapse of Heeled Hulls with Accidental Flooding</td>
<td>308</td>
</tr>
<tr>
<td>8.9</td>
<td>Considerations for ALS Applications to Ship-Shaped Offshore Units</td>
<td>313</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>9</td>
<td>Topsides, Mooring, and Export Facilities Design</td>
<td>318</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>318</td>
</tr>
<tr>
<td>9.2</td>
<td>Topsides Facilities</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>9.2.1 Oil and Water Separation Facilities</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>9.2.2 Gas Compression Facilities</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>9.2.3 Water Injection Facilities</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>9.2.4 Cargo Handling Systems</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>9.2.5 Utility and Support Systems</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>9.2.6 Safeguard Systems</td>
<td>326</td>
</tr>
<tr>
<td>9.3</td>
<td>Structural Design and Fabrication Considerations for Topsides and</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>Their Interfaces with the Hull</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3.1 Types of Topsides Supports</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>9.3.1.1 Multipoint Support Columns</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>9.3.1.2 Sliding/Flexible Support Stools</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>9.3.1.3 Transverse Girder Supports</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>9.3.2 Types of Topsides Flooring</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>9.3.3 Types of Topsides Fabrication</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>9.3.3.1 Built-In Grillage Deck</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>9.3.3.2 Preassembled Units</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>9.3.4 Structural Analysis of Topsides Modules and Interfaces</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>9.3.5 Interface Management and Other Lessons Learned</td>
<td>333</td>
</tr>
<tr>
<td>9.4</td>
<td>Mooring Facilities</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>9.4.1 Types of Moorings</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>9.4.1.1 Spread Moorings</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>9.4.1.2 Single-Point Moorings</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>(1) Fixed Tower</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>(2) CALM</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>(3) SALM</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>(4) ALP</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>(5) SPAR</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>(6) SAL</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>(7) Turret Mooring</td>
<td>342</td>
</tr>
</tbody>
</table>
Contents

9.4.2 Mooring System Selection for an FPSO in Deep Water 348
9.4.3 Design Considerations for Mooring Systems 349

9.5 Export Facilities 350
9.5.1 Methods of Export 350
9.5.2 Types of Shuttle Tanker Export 351
9.5.3 Design Considerations for Export Systems 352

References 354

10 Corrosion Assessment and Management 356
10.1 Introduction 356
10.2 Marine Corrosion Mechanisms 357
10.2.1 Fundamentals 357
10.2.2 Types of Corrosion 358
10.2.2.1 General Corrosion 359
10.2.2.2 Pitting Corrosion 360
10.2.2.3 Grooving 361
10.2.2.4 Weld Metal Corrosion 361
10.2.3 Factors Affecting Corrosion 361
10.3 Mathematical Models for Corrosion Wastage Prediction 364
10.3.1 Overall Behavior of Corrosion 365
10.3.2 Mechanical Models 366
10.3.2.1 Corrosion Depth Formulations 366
10.3.2.2 Data Collection of Corrosion Measurements 367
10.3.2.3 Characteristics of Observed Corrosion Wastage 371
10.3.2.4 Annualized Corrosion Rates 374
10.3.3 Phenomenological Models 379
10.4 Options for Corrosion Management 382
10.4.1 Corrosion Margin Addition 383
10.4.2 Coating 386
10.4.2.1 Surface Preparation 386
10.4.2.2 Types of Coating 387
10.4.2.3 Selection Criteria of Coating Material 389
10.4.2.4 Methodologies for Coating-Life Prediction 390
10.4.3 Cathodic Protection 391
10.4.4 Ballast Water Deoxygenation 393
10.4.5 Chemical Inhibitors 395

References 395

11 Inspection and Maintenance .. 400
11.1 Introduction 400
11.2 Types of Age-Related Deterioration 401
11.3 Methods for Damage Examination 402
11.3.1 Corrosion Wastage Examination 402
11.3.2 Fatigue and Other Crack Examination 404
11.3.3 Mechanical Damage Examination 405
11.3.4 Probability of Detection and Sizing 405
11.4 Recommended Practices for Trading Tankers 406
11.4.1 Condition Assessment Scheme 408
11.4.2 Enhanced Survey Programme 409
11.4.3 Emergency Response Services 411
11.4.4 Ship Inspection Report Programme 411
11.5 Risk-Based Inspection 411
11.5.1 RBI Team Setup 412
11.5.2 Component Grouping and Baselining 413
11.5.3 Risk-Based Prioritization 413
11.5.4 Inspection Plan Development 414
11.5.4.1 Inspection Strategy 414
11.5.4.2 Scope of Inspection 414
11.5.4.3 Frequency of Inspection 415
11.5.5 Inspection Execution 415
11.5.6 Analysis of Inspection Results 415
11.5.7 RBI Program Updating 416
11.6 Risk-Based Maintenance 416
11.6.1 Time-Variant Failure Mechanisms 417
11.6.2 Planned Maintenance 419
11.6.3 Condition Monitoring 421
11.6.4 Combination of Planned Maintenance and Condition Monitoring 421
11.6.5 Failure Finding 421
11.7 Recommended Practices for Ship-Shaped Offshore Units 423
11.7.1 Inspection Practices 423
11.7.2 Maintenance Practices 425
11.8 Effect of Corrosion Wastage on Plate Ultimate Strength 428
11.9 Effect of Fatigue Cracking on Plate Ultimate Strength 431
11.10 Effect of Time-Variant Age-Related Deterioration on FPSO Hull Ultimate Strength Reliability: An Academic Example 433
11.10.1 Scenario for Sea States and Operational Conditions 434
11.10.2 Scenario for Time-Variant Corrosion Wastage 436
11.10.3 Scenario for Time-Variant Fatigue Cracking 437
11.10.4 Time-Variant Ultimate Hull Strength Reliability Assessment 438
11.10.5 Considerations for Repair Strategies 439

12 Tanker Conversion and Decommissioning 447
12.1 Introduction 447
12.2 Tanker Conversion 448
12.2.1 Selection of Suitable Tankers 449
12.2.2 Condition Assessment of Aged Tanker Hull Structures 450
12.2.2.1 Inspection and Maintenance 450
12.2.2.2 Renewal Scantlings for Tanker Conversion 452
12.2.2.3 Repair of Defects, Dents, Pitting, Grooving, and Cracks 453
12.2.2.4 Residual Strength Assessment 453
12.2.3 Reusability of Existing Machinery and Equipment 453
12.2.4 Addition of New Components 454
12.2.5 Appraisals of Conversion Yard 456
12.3 Decommissioning

12.3.1 Regulatory Framework

12.3.2 Technical Feasibility Issues

12.3.3 Safety and Health Issues

12.3.4 Environmental Issues

12.3.5 Cost Issues

12.3.6 Decommissioning Practices for Ship-Shaped Offshore Installations

References

13 Risk Assessment and Management

13.1 Introduction

13.2 Process for Formal Safety Assessment

13.2.1 System Definition

13.2.2 Hazard Identification

13.2.3 Risk Assessment

13.2.4 Risk-Management Options

13.2.5 Cost–Benefit Analysis

13.2.6 Decision-Making Recommendations

13.3 Qualitative Risk Assessment

13.4 Quantitative Risk Assessment

13.4.1 Frequency Analysis

13.4.2 Consequence Analysis

13.4.3 Risk Representation

13.5 Risk Management during Design

13.5.1 Selection of Materials

13.5.2 Layout for Hazard Impact Minimization

13.5.3 Limit-State Design

13.5.4 Passive Safeguards for Fire and Explosion

13.5.5 Accelerated Degradation Protection

13.6 Risk Management during Operation

13.6.1 Collisions

13.6.2 Dropped Objects

13.6.3 Active Safeguards for Fire and Explosion

13.6.4 Inspection and Maintenance

References

Appendix 1. Terms and Definitions

Appendix 2. Scale Definitions of Winds, Waves, and Swells

A2.1 Beaufort Wind Scale

A2.2 Wave Scale

A2.3 Swell Scale

Appendix 3. Probability of Sea States at Various Ocean Regions

A3.1 Identification of Ocean Areas Using Marsden Squares

A3.2 Probability of Sea States in the North Atlantic

A3.3 Annual Sea States in the North Atlantic

A3.4 Annual Sea States in the North Pacific
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3.5 Characteristics of 100-Year Return Period Storms at Various Ocean</td>
<td>509</td>
</tr>
<tr>
<td>Regions</td>
<td></td>
</tr>
<tr>
<td>A3.6 Extremes of Environmental Phenomena at Various Ocean Regions</td>
<td>510</td>
</tr>
<tr>
<td>Appendix 4. Scaling Laws for Physical Model Testing</td>
<td>511</td>
</tr>
<tr>
<td>A4.1 Hydrodynamics Model Tests</td>
<td>511</td>
</tr>
<tr>
<td>A4.1.1 Froude Scaling Law</td>
<td>511</td>
</tr>
<tr>
<td>A4.1.2 Reynolds Scaling Law</td>
<td>511</td>
</tr>
<tr>
<td>A4.1.3 Vortex-Shedding Effects</td>
<td>512</td>
</tr>
<tr>
<td>A4.1.4 Surface Tension Effects</td>
<td>512</td>
</tr>
<tr>
<td>A4.1.5 Compressibility Effects</td>
<td>513</td>
</tr>
<tr>
<td>A4.2 Structural Mechanics Model Tests</td>
<td>513</td>
</tr>
<tr>
<td>Appendix 5. Wind-Tunnel Test Requirements</td>
<td>514</td>
</tr>
<tr>
<td>Appendix 6. List of Selected Industry Standards</td>
<td>515</td>
</tr>
<tr>
<td>Index</td>
<td>531</td>
</tr>
</tbody>
</table>