SHIP-SHAPED OFFSHORE INSTALLATIONS

Ship-shaped offshore units are some of the more economical systems for the development of offshore oil and gas fields and are often preferred in marginal fields. These systems are especially attractive when developing oil and gas fields in deep- and ultradeep-water areas and locations remote from existing pipeline infrastructures. Recently, the ship-shaped offshore units have also been considered for application to near-shore oil and gas terminals. This book is an ideal text and reference on the technologies for designing, building, and operating ship-shaped offshore units, within inevitable space (and time) requirements. This book includes a range of topics, from the initial contracting strategy to the decommissioning and the removal of the units concerned. Coverage includes both fundamental theory and principles of the individual technologies. This book will be useful to students who are approaching the subject for the first time as well as designers working on the engineering for ship-shaped offshore installations.

Jeom Kee Paik is Professor of Ship and Offshore Structural Mechanics at Pusan National University, Korea, and is an internationally acclaimed authority on limit-state design and assessment of ships and offshore structures. Professor Paik has been chairman of the working group for development of ISO code 18072 on ships and marine technology and chairman of the International Ship and Offshore Structures Congress (ISSC) Technical Committees on Ultimate Strength, Condition Assessment of Aged Ships, and Ship Collisions and Grounding. Professor Paik is editor-in-chief of the international journal Ships and Offshore Structures (SaOS). He is a Fellow, council member, Korean branch chairman, and a publications committee member of the Royal Institution of Naval Architects (RINA), UK, and a member of the Technical and Research Steering Committee of the Society of Naval Architects and Marine Engineers (SNAME), USA. Professor Paik is the coauthor of Ultimate Limit State Design of Steel-Plated Structures and the author or coauthor of more than 500 publications in refereed journals, conference proceedings, research reports, and several book chapters.

Anil Kumar Thayamballi is Senior Staff Consultant and Engineering Advisor with a marine consultancy group in San Ramon, California. He is a specialist in marine structural design and life-cycle care, with 25 years of broad-ranging experience in ship-shaped structures. He has served on the American Society of Civil Engineers (ASCE) Committee for Fatigue and Fracture Reliability and on the American Petroleum Institute Resource Group RG-4 on Structural Element Behavior. He has served on the ISSC Technical Committee on Design Procedures and Philosophy and has served as its chairman. He has also served as working group chairman for the Tanker Structure Cooperative Forum and continues to be involved in the forum activities. He currently serves on the Marine Technology Committee of the SNAME in New York. Dr. Thayamballi is also a member-at-large of the Structural Stability Research Council and a member of the Royal Institution of Naval Architects. Dr. Thayamballi is the author or coauthor of more than sixty refereed technical publications and the book Ultimate Limit State Design of Steel-Plated Structures.
Ship-Shaped Offshore Installations

DESIGN, BUILDING, AND OPERATION

JEOM KEE PAIK
Department of Naval Architecture and Ocean Engineering
Pusan National University, Korea

ANIL KUMAR THAYAMBALLI
San Ramon, CA, USA
Contents

Preface

Acknowledgments

How to Use This Book

1 Overview of Ship-Shaped Offshore Installations

1.1 Historical Overview of Offshore Structure Developments

1.1.1 Early History

1.1.2 History from World War II to the Early 1970s

1.1.3 History after the Early 1970s

1.2 Process of Offshore Oil and Gas Developments

1.3 System Concepts for Deep- and Ultradeep-Water Field Developments

1.3.1 Semisubmersibles

1.3.2 Spars

1.3.3 Tension Leg Platforms

1.3.4 Ship-Shaped Offshore Units

1.4 A Brief History of the FPSO Installations

1.5 Trading Tankers versus Ship-Shaped Offshore Units

1.6 New Build versus Tanker Conversion

1.7 Layout and General Arrangement of FPSOs

1.7.1 Deck Area and General Arrangement

1.7.2 Layout

1.7.3 Relationships between Principal Dimensions

1.7.4 Double-Hull Arrangements

1.7.5 Tank Design and Arrangements

1.8 Longitudinal Strength Characteristics of FPSO Hulls

1.9 Drawings of a Hypothetical FPSO

1.10 Aims and Scope of This Book

References

2 Front-End Engineering

2.1 Introduction

2.2 Initial Planning and Contracting Strategies

2.3 Engineering and Design

2.4 Principal Aspects Driving Project and Vessel Costs
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 Selection of Storage, Production, and Offloading Capabilities</td>
<td>34</td>
</tr>
<tr>
<td>2.6 Site-Specific Metocean Data</td>
<td>35</td>
</tr>
<tr>
<td>2.7 Process Facility Design Parameters</td>
<td>36</td>
</tr>
<tr>
<td>2.8 Limit-State Design Requirements</td>
<td>36</td>
</tr>
<tr>
<td>2.9 Risk-Assessment Requirements</td>
<td>37</td>
</tr>
<tr>
<td>2.10 Project Management</td>
<td>38</td>
</tr>
<tr>
<td>2.11 Post-Bid Schedule and Management</td>
<td>39</td>
</tr>
<tr>
<td>2.12 Building Material Issues: Yield Stress</td>
<td>39</td>
</tr>
<tr>
<td>2.13 Building Material Issues: Fracture Toughness</td>
<td>41</td>
</tr>
<tr>
<td>2.14 Hull Structural Scantling Issues</td>
<td>42</td>
</tr>
<tr>
<td>2.15 Action-Effect Analysis Issues</td>
<td>43</td>
</tr>
<tr>
<td>2.16 Fatigue Design Issues</td>
<td>44</td>
</tr>
<tr>
<td>2.17 Hydrodynamic Impact-Pressure Action Issues: Sloshing, Slamming,</td>
<td>45</td>
</tr>
<tr>
<td>and Green Water</td>
<td></td>
</tr>
<tr>
<td>2.18 Vessel Motion and Station-Keeping Issues</td>
<td>45</td>
</tr>
<tr>
<td>2.19 Topsides Design Issues</td>
<td>46</td>
</tr>
<tr>
<td>2.20 Mooring System Design Issues</td>
<td>47</td>
</tr>
<tr>
<td>2.21 Export System Design Issues</td>
<td>47</td>
</tr>
<tr>
<td>2.22 Corrosion Issues</td>
<td>48</td>
</tr>
<tr>
<td>2.23 Accommodation Design Issues</td>
<td>48</td>
</tr>
<tr>
<td>2.24 Construction Issues</td>
<td>49</td>
</tr>
<tr>
<td>2.25 Equipment Testing Issues</td>
<td>49</td>
</tr>
<tr>
<td>2.26 Towing Issues</td>
<td>50</td>
</tr>
<tr>
<td>2.27 Field Installation and Commissioning Issues</td>
<td>50</td>
</tr>
<tr>
<td>2.28 Inspection and Maintenance Issues</td>
<td>51</td>
</tr>
<tr>
<td>2.29 Regulations and Classing Issues</td>
<td>52</td>
</tr>
<tr>
<td>References</td>
<td>53</td>
</tr>
</tbody>
</table>

3 Design Principles, Criteria, and Regulations 55

3.1 Introduction	55
3.2 Structural Design Principles	55
3.2.1 Working Stress Design	56
3.2.2 Limit-State Design	56
3.2.3 Critical Buckling Strength Design	57
3.2.4 Comparison among the Three Design Methods	60
3.3 Limit-State Criteria for Structural Design and Strength Assessment	65
3.4 Probabilistic Format versus Partial Safety Factor Format	65
3.4.1 Probabilistic Format	65
3.4.2 Partial Safety Factor Format	67
3.4.3 Considerations Related to Safety Factors	68
3.5 Unified Design Requirements for Trading Tanker Hull Structures	71
3.6 Design Principles for Stability	74
3.7 Design Principles for Towing and Station-Keeping	74
3.8 Design Principles for Vessel Motions	75
3.9 Design Principles for Safety, Health, and the Environment	75
3.9.1 Design Principles for Safety	75
3.9.2 Design Principles for Health	77
3.9.3 Design Principles for the Environment	77
Contents

3.10 Regulations, International Standards, and Recommended Practices 78
References 80

4 Environmental Phenomena and Application to Design 82

4.1 Introduction 82
4.2 Environmental Data 83
4.3 Waves 84
 4.3.1 UKOOA FPSO Design Guidance Notes for UKCS Service 85
 4.3.2 American Petroleum Institute Recommended Practices 86
 4.3.3 Det Norske Veritas Classification Notes 86
4.4 Winds 88
4.5 Water Depths and Tidal Levels 91
4.6 Currents 91
4.7 Air and Sea Temperatures 93
4.8 Snow and Icing 93
4.9 Marine Growth 95
4.10 Tank Sloshing 96
 4.10.1 Fundamentals 96
 4.10.2 Practices for Sloshing Assessment 96
 4.10.3 Measures for Sloshing Risk Mitigation 99
4.11 Bow Slamming 99
 4.11.1 Fundamentals 99
 4.11.2 Practices for Bow-Slamming Assessment 99
 4.11.3 Measures for Bow-Slamming Risk Mitigation 100
4.12 Green Water 100
 4.12.1 Fundamentals 100
 4.12.2 Practices for Green-Water Assessment 101
 4.12.3 Measures for Green-Water Risk Mitigation 102
4.13 Considerations Related to the Return Period 103
4.14 Wave Energy Spectra Expressions 105
 4.14.2 The JONSWAP Spectrum 106
 4.14.3 Directional Wave Spectra 106
4.15 Design Basis Environmental Conditions 107
References 107

5 Serviceability Limit-State Design .. 111

5.1 Introduction 111
5.2 Design Principles and Criteria 112
5.3 Practices for Actions and Action-Effects Analysis 113
5.4 Elastic Deflection Limits: Under Quasistatic Actions 114
 5.4.1 Support Members 114
 5.4.2 Plates between Support Members 118
5.5 Elastic Buckling Limits 118
 5.5.1 Elastic Plate Buckling 120
 5.5.2 Elastic Stiffener Web Buckling 123
 5.5.3 Elastic Tripping of Stiffener 125
 5.5.4 Elastic Stiffener Flange Buckling 128
5.6 Permanent Set Deflection Limits: Under Impact-Pressure Actions 128
 5.6.1 Plates between Support Members 129
 5.6.2 Longitudinally Stiffened Panels between Transverse Frames 131
 5.6.3 Cross-Stiffened Plate Structures 132
 5.6.4 Illustrative Examples 133
5.7 Intact Vessel Stability 134
5.8 Vessel Station-Keeping 137
5.9 Vessel Weathervaning and Heading Control 139
5.10 Vessel Motion Exceedance 140
5.11 Vibration and Noise 141
5.12 Mooring Line Vortex-Induced Resonance Oscillation 143
5.13 Corrosion Wastage 145

References 145

6 Ultimate Limit-State Design 148
 6.1 Introduction 148
 6.2 Design Principles and Criteria 148
 6.3 Actions and Action-Effects Analysis 150
 6.4 Structural Component Configuration 151
 6.5 Ultimate Strength of Plates 153
 6.5.1 Fundamentals 153
 6.5.2 Closed-Form Expressions 154
 6.5.3 Analytical Methods 159
 6.5.4 Semianalytical Methods 164
 6.5.5 Nonlinear Finite-Element Methods 166
 6.5.6 Illustrative Examples 168
 6.6 Ultimate Strength of Stiffened Plate Structures 168
 6.6.1 Fundamentals 168
 6.6.2 Closed-Form Expressions 173
 6.6.3 Analytical Methods 173
 6.6.4 Semianalytical Methods 175
 6.6.5 Nonlinear Finite-Element Methods 177
 6.6.6 Illustrative Examples 180
 6.7 Ultimate Strength of Vessel Hulls 182
 6.7.1 Fundamentals 182
 6.7.2 Closed-Form Expressions 182
 6.7.3 Progressive Hull Collapse Analysis: Idealized Structural Unit Method 185
 6.7.3.1 Background of Idealized Structural Unit Method 185
 6.7.3.2 ISUM Structural Modeling 187
 6.7.3.3 ISUM Plate Element 188
 (1) Nodal Forces and Nodal Displacements 189
 (2) Strain versus Displacement Relationship 189
 (3) Stress versus Strain Relationship 191
 (4) Tangent Stiffness Equation 192
 (5) Displacement (Shape) Function 193
 (6) Failure State Considerations 194
 (7) Post-Ultimate Strength Behavior 195
 (8) Benchmark Study of the Plate Element 195
8.5.3 Closed-Form Expressions for Ultimate Strength of Dented Plates
 8.5.3.1 Under Axial Compressive Loads 293
 8.5.3.2 Under Edge Shear Loads 296

8.6 Fire 296
 8.6.1 Fundamentals 296
 8.6.2 Practices for Fire Assessment 297

8.7 Gas Explosion 299
 8.7.1 Fundamentals 299
 8.7.2 Practices for Gas Explosion Action Analysis 301
 8.7.2.1 Prescriptive Methods 301
 8.7.2.2 Probabilistic Methods 302
 8.7.3 Practices for Gas Explosion Consequence Analysis 303
 8.7.4 Illustrative Examples 303

8.8 Progressive Collapse of Heeled Hulls with Accidental Flooding 308

8.9 Considerations for ALS Applications to Ship-Shaped Offshore Units 313

References 313

9 Topsides, Mooring, and Export Facilities Design 318

9.1 Introduction 318

9.2 Topsides Facilities 319
 9.2.1 Oil and Water Separation Facilities 319
 9.2.2 Gas Compression Facilities 323
 9.2.3 Water Injection Facilities 324
 9.2.4 Cargo Handling Systems 324
 9.2.5 Utility and Support Systems 325
 9.2.6 Safeguard Systems 326

9.3 Structural Design and Fabrication Considerations for Topsides and Their Interfaces with the Hull 327
 9.3.1 Types of Topsides Supports 327
 9.3.1.1 Multipoint Support Columns 328
 9.3.1.2 Sliding/Flexible Support Stools 329
 9.3.1.3 Transverse Girder Supports 330
 9.3.2 Types of Topsides Flooring 330
 9.3.3 Types of Topsides Fabrication 331
 9.3.3.1 Built-In Grillage Deck 332
 9.3.3.2 Preassembled Units 332
 9.3.4 Structural Analysis of Topsides Modules and Interfaces 332
 9.3.5 Interface Management and Other Lessons Learned 333

9.4 Mooring Facilities 336
 9.4.1 Types of Moorings 336
 9.4.1.1 Spread Moorings 337
 9.4.1.2 Single-Point Moorings 338
 (1) Fixed Tower 338
 (2) CALM 338
 (3) SALM 340
 (4) ALP 340
 (5) SPAR 342
 (6) SAL 342
 (7) Turret Mooring 342
Contents

9.4.2 Mooring System Selection for an FPSO in Deep Water 348
9.4.3 Design Considerations for Mooring Systems 349
9.5 Export Facilities 350
9.5.1 Methods of Export 350
9.5.2 Types of Shuttle Tanker Export 351
9.5.3 Design Considerations for Export Systems 352
References 354

10 Corrosion Assessment and Management 356

10.1 Introduction 356
10.2 Marine Corrosion Mechanisms 357
10.2.1 Fundamentals 357
10.2.2 Types of Corrosion 358
10.2.2.1 General Corrosion 359
10.2.2.2 Pitting Corrosion 360
10.2.2.3 Grooving 361
10.2.2.4 Weld Metal Corrosion 361
10.2.3 Factors Affecting Corrosion 361
10.3 Mathematical Models for Corrosion Wastage Prediction 364
10.3.1 Overall Behavior of Corrosion 365
10.3.2 Mechanical Models 366
10.3.2.1 Corrosion Depth Formulations 366
10.3.2.2 Data Collection of Corrosion Measurements 367
10.3.2.3 Characteristics of Observed Corrosion Wastage 371
10.3.2.4 Annualized Corrosion Rates 374
10.3.3 Phenomenological Models 379
10.4 Options for Corrosion Management 382
10.4.1 Corrosion Margin Addition 383
10.4.2 Coating 386
10.4.2.1 Surface Preparation 386
10.4.2.2 Types of Coating 387
10.4.2.3 Selection Criteria of Coating Material 389
10.4.2.4 Methodologies for Coating-Life Prediction 390
10.4.3 Cathodic Protection 391
10.4.4 Ballast Water Deoxygenation 393
10.4.5 Chemical Inhibitors 395
References 395

11 Inspection and Maintenance .. 400

11.1 Introduction 400
11.2 Types of Age-Related Deterioration 401
11.3 Methods for Damage Examination 402
11.3.1 Corrosion Wastage Examination 402
11.3.2 Fatigue and Other Crack Examination 404
11.3.3 Mechanical Damage Examination 405
11.3.4 Probability of Detection and Sizing 405
11.4 Recommended Practices for Trading Tankers 406
11.4.1 Condition Assessment Scheme 408
11.4.2 Enhanced Survey Programme 409
11.4.3 Emergency Response Services 411
11.4.4 Ship Inspection Report Programme 411

11.5 Risk-Based Inspection 411
 11.5.1 RBI Team Setup 412
 11.5.2 Component Grouping and Baselining 413
 11.5.3 Risk-Based Prioritization 413
 11.5.4 Inspection Plan Development 414
 11.5.4.1 Inspection Strategy 414
 11.5.4.2 Scope of Inspection 414
 11.5.4.3 Frequency of Inspection 415
 11.5.5 Inspection Execution 415
 11.5.6 Analysis of Inspection Results 415
 11.5.7 RBI Program Updating 416

11.6 Risk-Based Maintenance 416
 11.6.1 Time-Variant Failure Mechanisms 417
 11.6.2 Planned Maintenance 419
 11.6.3 Condition Monitoring 421
 11.6.4 Combination of Planned Maintenance and Condition Monitoring 421
 11.6.5 Failure Finding 421

11.7 Recommended Practices for Ship-Shaped Offshore Units 423
 11.7.1 Inspection Practices 423
 11.7.2 Maintenance Practices 425

11.8 Effect of Corrosion Wastage on Plate Ultimate Strength 428
11.9 Effect of Fatigue Cracking on Plate Ultimate Strength 431
11.10 Effect of Time-Variant Age-Related Deterioration on FPSO Hull Ultimate Strength Reliability: An Academic Example 433
 11.10.1 Scenario for Sea States and Operational Conditions 434
 11.10.2 Scenario for Time-Variant Corrosion Wastage 436
 11.10.3 Scenario for Time-Variant Fatigue Cracking 437
 11.10.4 Time-Variant Ultimate Hull Strength Reliability Assessment 438
 11.10.5 Considerations for Repair Strategies 439

References 444

12 Tanker Conversion and Decommissioning 447
 12.1 Introduction 447
 12.2 Tanker Conversion 448
 12.2.1 Selection of Suitable Tankers 449
 12.2.2 Condition Assessment of Aged Tanker Hull Structures 450
 12.2.2.1 Inspection and Maintenance 450
 12.2.2.2 Renewal Scantlings for Tanker Conversion 452
 12.2.2.3 Repair of Defects, Dents, Pitting, Grooving, and Cracks 453
 12.2.2.4 Residual Strength Assessment 453
 12.2.3 Reusability of Existing Machinery and Equipment 453
 12.2.4 Addition of New Components 454
 12.2.5 Appraisals of Conversion Yard 456
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>Decommissioning</td>
<td>456</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Regulatory Framework</td>
<td>457</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Technical Feasibility Issues</td>
<td>458</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Safety and Health Issues</td>
<td>459</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Environmental Issues</td>
<td>459</td>
</tr>
<tr>
<td>12.3.5</td>
<td>Cost Issues</td>
<td>460</td>
</tr>
<tr>
<td>12.3.6</td>
<td>Decommissioning Practices for Ship-Shaped Offshore Installations</td>
<td>460</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>460</td>
</tr>
</tbody>
</table>

13 Risk Assessment and Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>463</td>
</tr>
<tr>
<td>13.2</td>
<td>Process for Formal Safety Assessment</td>
<td>464</td>
</tr>
<tr>
<td>13.2.1</td>
<td>System Definition</td>
<td>465</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Hazard Identification</td>
<td>465</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Risk Assessment</td>
<td>469</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Risk-Management Options</td>
<td>470</td>
</tr>
<tr>
<td>13.2.5</td>
<td>Cost–Benefit Analysis</td>
<td>470</td>
</tr>
<tr>
<td>13.2.6</td>
<td>Decision-Making Recommendations</td>
<td>471</td>
</tr>
<tr>
<td>13.3</td>
<td>Qualitative Risk Assessment</td>
<td>472</td>
</tr>
<tr>
<td>13.4</td>
<td>Quantitative Risk Assessment</td>
<td>475</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Frequency Analysis</td>
<td>476</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Consequence Analysis</td>
<td>479</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Risk Representation</td>
<td>480</td>
</tr>
<tr>
<td>13.5</td>
<td>Risk Management during Design</td>
<td>482</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Selection of Materials</td>
<td>483</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Layout for Hazard Impact Minimization</td>
<td>483</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Limit-State Design</td>
<td>483</td>
</tr>
<tr>
<td>13.5.4</td>
<td>Passive Safeguards for Fire and Explosion</td>
<td>484</td>
</tr>
<tr>
<td>13.5.5</td>
<td>Accelerated Degradation Protection</td>
<td>484</td>
</tr>
<tr>
<td>13.6</td>
<td>Risk Management during Operation</td>
<td>484</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Collisions</td>
<td>484</td>
</tr>
<tr>
<td>13.6.2</td>
<td>Dropped Objects</td>
<td>485</td>
</tr>
<tr>
<td>13.6.3</td>
<td>Active Safeguards for Fire and Explosion</td>
<td>485</td>
</tr>
<tr>
<td>13.6.4</td>
<td>Inspection and Maintenance</td>
<td>485</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>486</td>
</tr>
</tbody>
</table>

Appendix 1. Terms and Definitions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2.1</td>
<td>Beaufort Wind Scale</td>
<td>503</td>
</tr>
<tr>
<td>A2.2</td>
<td>Wave Scale</td>
<td>503</td>
</tr>
<tr>
<td>A2.3</td>
<td>Swell Scale</td>
<td>504</td>
</tr>
</tbody>
</table>

Appendix 2. Scale Definitions of Winds, Waves, and Swells

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3.1</td>
<td>Identification of Ocean Areas Using Marsden Squares</td>
<td>505</td>
</tr>
<tr>
<td>A3.2</td>
<td>Probability of Sea States in the North Atlantic</td>
<td>506</td>
</tr>
<tr>
<td>A3.3</td>
<td>Annual Sea States in the North Atlantic</td>
<td>507</td>
</tr>
<tr>
<td>A3.4</td>
<td>Annual Sea States in the North Pacific</td>
<td>508</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3.5 Characteristics of 100-Year Return Period Storms at Various Ocean Regions</td>
<td>509</td>
</tr>
<tr>
<td>A3.6 Extremes of Environmental Phenomena at Various Ocean Regions</td>
<td>510</td>
</tr>
<tr>
<td>Appendix 4. Scaling Laws for Physical Model Testing</td>
<td>511</td>
</tr>
<tr>
<td>A4.1 Hydrodynamics Model Tests</td>
<td>511</td>
</tr>
<tr>
<td>A4.1.1 Froude Scaling Law</td>
<td>511</td>
</tr>
<tr>
<td>A4.1.2 Reynolds Scaling Law</td>
<td>511</td>
</tr>
<tr>
<td>A4.1.3 Vortex-Shedding Effects</td>
<td>512</td>
</tr>
<tr>
<td>A4.1.4 Surface Tension Effects</td>
<td>512</td>
</tr>
<tr>
<td>A4.1.5 Compressibility Effects</td>
<td>513</td>
</tr>
<tr>
<td>A4.2 Structural Mechanics Model Tests</td>
<td>513</td>
</tr>
<tr>
<td>Appendix 5. Wind-Tunnel Test Requirements</td>
<td>514</td>
</tr>
<tr>
<td>Appendix 6. List of Selected Industry Standards</td>
<td>515</td>
</tr>
<tr>
<td>Index</td>
<td>531</td>
</tr>
</tbody>
</table>
Today, the need for development of offshore oil and gas resources in increasingly deeper waters is becoming more important because of many reasons associated with the world economy and the related energy resource development constraints and strategies.

Fixed-type offshore platforms, which have been useful for oil and gas developments in relatively shallow waters, are now much less feasible as we move further in developing oil and gas fields in deep- and ultradeep-water areas, now reaching more than 1,000m water depth. Floating-type offshore structures have to be increasingly considered to develop these deep-water areas. In addition to ship-shaped offshore units, at least three other types of floating production systems – semisubmersibles, spars, and tension leg platforms (TLP) – are also available today for that purpose. All of these types of floating systems require storage, pipeline infrastructure, and other associated field structures and systems to transport produced oil and gas to the facilities on shore, but perhaps to varying degrees.

That the use of ship-shaped offshore units remains a very attractive alternative in many cases of field development is attributable to its ability to successfully serve multiple functions, such as production, storage, and offloading, and the capability for oil or gas to be transported to shore via shuttle tankers. Ship-shaped offshore units reduce need for pipeline infrastructure and are functional on a fast-track basis.

Ship-shaped offshore units are now recognized as perhaps one of the most economical of all systems for potential developments of offshore oil and gas and are often the preferred choice in marginal fields. These systems are becoming more attractive for developing oil and gas fields in deep- and ultradeep-water areas and locations remote from the existing pipeline infrastructures. Recently, the ship-shaped offshore units have also begun to be applied to near-shore oil and gas terminals.

Although the use of ship-shaped offshore units has been in existence since the late 1970s, the complexity and size of the units have been gradually increasing, and there are still many issues related to design, building, and operation to be resolved for achieving high integrity in terms of safety, health, environment, and economics/financial expenditures.

Although ship-shaped offshore units are similar to trading tankers in structural geometry, they are different in a variety of ways. Environmental conditions are unique in each case, and structural design concepts must be tailored to a specific location. Trading tankers may avoid rough weather or alter their heading in operation, but ship-shaped offshore units must be continuously located in the same area with
site-specific environments and do not have the ability to periodically dry-dock for the necessary inspection and maintenance. This is an aspect that must be reflected in some fashion in the design and long-term durability and reliability of the units concerned.

To continue further on the subject of differences from trading tankers, one should note that ship-shaped offshore units are likely to be subjected to significant environmental actions even during loading and unloading; however, trading tankers are typically loaded and unloaded at still-water condition in harbor. And, for historical reasons, the design return period of ship-shaped offshore units is typically taken as 100 years, and that of trading tankers is considered to be 20 to 25 years or so.

The application of existing procedures, criteria, and standards to the structural design of ship-shaped offshore units also requires additional thought and discussion. This can be particularly important for the many interface areas between the hull and topsides. Even for the hull part, the shipbuilding industry standards may need to be selectively upgraded to ensure the long life and onsite reliability needed. Similarly, for the topsides part, it is often not straightforward to apply the relatively more economical shipbuilding industry standards, in part perhaps because of differences in the background, experience, and culture of the operating personnel involved. In any event, the complexities of the design are enormous, and there are many interface issues (e.g., those related to the interaction between hull and topsides facilities and related consistency in design information) that need to be identified up front and addressed and managed on a continuous basis.

In such a situation, direct analyses from first principles, advanced engineering, and practices are increasingly desired so that practicing engineers and academic researchers can resolve the issues that remain, reconcile differences in standards and practices, and improve structural and other design procedures and criteria. In the never-ending quest for safe, reliable, yet economical structures and systems effectively designed and constructed, there are often demanding schedules and other constraints and challenges.

Also, many diverse international organizations in the maritime industry such as the International Maritime Organization (IMO), International Organization for Standardization (ISO), International Association of Classification Societies (IACS), and the industry in general are now increasingly applying the limit-state design approach for both trading ships and ship-shaped offshore installations, making related knowledge and training even more relevant. Another emerging and increasingly more important technology consists of risk-based approaches to design, operation, and human and environmental safety, with much of the same accompanying knowledge, training, and familiarization needs.

The intention behind writing this book is to develop a textbook and handy resource that sufficiently addresses current practices, recent advances, and emerging trends on core technologies for designing, building, and operating ship-shaped offshore units, within certain inevitable space (and time) requirements. This book covers a wide range of topics, from the initial contracting strategy to the decommissioning and even the removal of the units concerned, but not always to a depth some might have wished for. Although a large number of research papers and references and industry standards useful for specific topics in the areas do exist, we did our best to highlight selected and useful ones among them in the various chapters and appendices.
Preface

We have also tried our utmost to always refer to relevant past work, with proper acknowledgments. It is respectfully requested that any unintentional oversights in this regard be brought to our attention for correction in future editions.

We believe and hope that this book will be very useful for practicing engineers and engineers-in-training and will contribute to their increased awareness and potentially greater use of advanced and sophisticated technologies as well as existing and emerging practices. Because of its coverage of the fundamentals and principles of the individual technologies, this book will also be useful for university students who are approaching both the initial and more intensive studies of advanced engineering for ship-shaped offshore installations. With regard to the scope, emphasis, and other relevant aspects of this book, we encourage all related and pertinent feedback and suggestions for the future; these will be gratefully received.

Professor Jeom Kee Paik, Pusan National University, Korea
Dr. Anil Kumar Thayamballi, San Ramon, CA, USA
We are very pleased to acknowledge all of those individuals and organizations who helped make this book possible.

Professor N. D. P. Barltrop (Universities of Glasgow and Strathclyde, UK), editor of the excellent book in this area titled *Floating Structures: A Guide for Design and Analysis* (1998), provided invaluable suggestions to improve the initial book manuscript. Invaluable suggestions for improvements were also received from Dr. I. Lotsberg (Det Norske Veritas, Norway) for Chapter 7, “Fatigue Limit-State Design,” and from Professor R. E. Melchers (University of Newcastle, Australia) for Chapter 10, “Corrosion Assessment and Management.” We also wish to thank Mr. G. J. Adhia, Mr. M. R. Buetzow, and Dr. M. C. Ximenes (Chevron Shipping Company, USA) for their very useful advice, critique, and comments related in particular to Chapter 2, “Front-End Engineering,” and several other chapters; and also Dr. A. Newport (Single Buoy Mooring Inc., Monaco) for his valuable comments related to mooring system designs.

Numerous individuals and organizations provided various materials in the book. Samsung Heavy Industries, Korea, provided various computer graphics and pictures of topsides modules and of FPSOs. SBM Offshore NV, The Netherlands, (via Mr. H. Peerboom) provided various illustrations and photos of mooring systems and FPSOs. These are quite helpful to better understand the layout and arrangements of FPSOs, topsides modules, and mooring systems. We also acknowledge Dr. G. Wang (American Bureau of Shipping, USA) for structural characteristics data of trading tankers and FPSOs; Dr. Z. Czujko (Nowatec AS, Norway) for numerical simulations of gas explosion actions and their consequences; Professor C. M. Rizzo (University of Genoa, Italy) for the methods of damage detection and examination; Dr. P. A. Frieze (PAFA Consulting, UK) for several useful improvements and suggestions; the UK Health and Safety Executive for illustrations regarding ship-shaped offshore design; the Society of Petroleum Engineers for illustrations regarding topsides facility design; and the American Society of Mechanical Engineers for pictures regarding FPSO construction.

Our heartfelt thanks are also due to our senior editor, Mr. Peter Gordon at Cambridge University Press, and our project manager, Ms. Katie Greecylo at Techbooks. In many ways, this book would not have been possible without their extraordinary efforts and assistance.

We also acknowledge the extensive efforts of graduate students at the Ship and Offshore Structural Mechanics Laboratory, Department of Naval Architecture and
Ocean Engineering, Pusan National University, which is a National Research Laboratory funded by the Korea Ministry of Science and Technology. In particular, special thanks are given to J. K. Seo, who developed many of the illustrations in this book.

Any opinions expressed in this book are strictly those of the authors and not those of the organizations with which the authors are associated or of the individuals and organizations who provided us invaluable assistance during this effort.

Finally, we take this opportunity to thank our wives and families for their unfailing patience and support during the writing of this second book we coauthored: Yun Hee, Myung Hoon, and Yun Jung and Nita and Neil. To them we hereby dedicate this book.

Jeom Kee Paik and Anil Kumar Thayamballi
How to Use This Book

Our intention behind writing this book is to develop a textbook and handy resource that contains current practices, recent advances, and future trends on core technologies essential for ship-shaped offshore installations. We feel that such a book, with an appropriate mixture of academic rigor and practical experience, will be a welcome addition to many bookshelves, including those of university students in key shipbuilding countries worldwide and of interested practitioners. Therefore, in this book we have attempted to cover, within a limited space, a number of pertinent topics ranging from the initial contracting strategy to the decommissioning and removal of the floating units concerned.

Chapter 1 presents an overview of ship-shaped offshore installations, including structural characteristics with general arrangement and midship section drawings of a hypothetical FPSO. Historical overview and selection strategy of various floating offshore systems (e.g., semisubmersibles, spars, tension leg platforms, and ship-shaped offshore units) to develop oil and gas offshore are also discussed.

Chapter 2 addresses the front-end engineering of ship-shaped offshore installations, including the identification and discussion of various important issues that must be resolved successfully during the design and building of such offshore units.

Chapter 3 describes principles and criteria for designing and building ship-shaped offshore units, with the emphasis on limit-state design. Some considerations for safety factor determination are given. This chapter refers to existing classification society rules, recommended practices, regulations, and international standards that will be used for designing and building ship-shaped offshore units in terms of safety, health, the environment, and economics/financial expenditures.

Chapter 4 addresses environmental phenomena and application to design, covering many types of potential environmental actions such as wind, waves, current, swell, ice, snow, temperature, and marine growth. Emerging practices for predicting impact actions arising from tank sloshing, bow slamming, and green water are presented. Some considerations for the design return period of the offshore units are addressed.

Chapter 5 presents current practices and recent advances useful for serviceability limit-state design of ship-shaped offshore units. This chapter describes the fundamentals, calculation methods, and design criteria for elastic deflection limits under quasistatic actions, elastic buckling limits, permanent set deflection limits under impact-pressure actions (arising from tank sloshing, bow slamming, and green water),
intact vessel stability, watertight integrity, weathervaning (heading control), station-keeping, vessel motion exceedance, vibration and noise, mooring line vortex-induced resonance oscillations, and localized corrosion wastage.

Chapter 6 presents emerging practices and recent advances useful for ultimate limit-state design of ship-shaped offshore units. This chapter describes the fundamentals, calculation methods, and design criteria for determining the ultimate strength of plates, stiffened plate structures, entire vessel hulls, and structural systems. Closed-form expressions and progressive collapse analysis methods are presented. Illustrative examples for the ultimate strength calculations of structural components and vessel hulls are shown.

Chapter 7 presents current practices and recent advances useful for fatigue limit-state design of ship-shaped offshore units, with emphasis on the spectral-analysis-based approach. This chapter describes the fundamentals, calculation methods, and practices for fatigue limit-state design. The methods for determining hot spot stresses with finite-element modeling techniques are presented. The selection of relevant S–N curves and the calculations of fatigue damage accumulation are described. The time-variant crack propagation models that are needed for time-variant reliability assessment of aged structures with fatigue cracking are described together with illustrative examples of the calculations to be made.

Chapter 8 addresses emerging practices and recent advances useful for accidental limit-state design. This chapter describes the fundamentals, calculation methods, and practices for determining accidental actions and the consequences of damaged vessel stability due to collision, dropped objects, fire, gas explosion, progressive hull collapse due to structural damage, and accidental flooding. Closed-form expressions and numerical simulation methods are presented. Illustrative examples for analyzing the consequences of the accidental events are shown.

Chapter 9 presents an overview of the considerations and practices for designing and building topsides, cargo export, and mooring facilities. Several illustrations of FPSO systems and the structural response analyses of the interaction between vessel hull and topsides modules are presented. The importance of various interface-management issues is emphasized.

Chapter 10 presents corrosion assessment and management for ship-shaped offshore structures. Starting with pertinent corrosion mechanisms, useful mechanical and phenomenological models for predicting corrosion wastage are presented. Corrective or protective design and operational measures, such as corrosion margin addition, coating, cathodic protection, ballast water deoxygenation, and inhibitors, are described. The effect of corrosion wastage on the ultimate limit state of structural components and vessel hulls is addressed with illustrative examples of the calculations. Methods for predicting the coating durability are also presented in this chapter.

Chapter 11 presents current practices and recent advances for inspection and maintenance of ship-shaped offshore structures. Emerging practices for condition assessment of trading tankers, which may be useful for offshore units, are reviewed. Risk-based inspection and maintenance procedures are presented. The effects of age-related deterioration, such as corrosion and fatigue cracking, on the time-variant ultimate strength reliability of ship-shaped offshore units are addressed. Some
considerations for repair strategies based on quantitative reliability and risk-based methodologies are provided.

Chapter 12 presents current practices for conversion and decommissioning. Although this book is focused on the core technologies for designing and building new-build units, the conversion strategies are also important because a large number of ship-shaped offshore units worldwide are tanker conversions. Today, the world community requires all of us to pay appropriate attention to the decommissioning and disposal of the used offshore units by meeting strict international and regional regulations and standards and also by proactive planning and anticipatory design. This chapter provides an overview of the current practices and the important issues related to decommissioning as well.

Chapter 13 presents emerging practices and recent advances for risk assessment and management. It is highly desirable today to apply risk-assessment methods to designing, building, and operating various types of structural systems, including ship-shaped offshore units. This chapter describes the fundamentals and salient details of selected risk-assessment methods, together with extensive references. Specific areas of the application of risk-assessment methods to the design and operation of ship-shaped offshore units are noted and discussed.

The appendices provide useful data necessary for design of ship-shaped offshore units. Important terminologies used in the book are defined. Scale definitions of wind, wave, and swell are presented. Representative data of sea states at various ocean regions, an important part of wave action predictions of ship-shaped offshore units as well as trading tankers, are provided. Selected data on annual sea-state occurrences in the North Atlantic and North Pacific are presented. Illustrative characteristics of 100-year return period storms and of extremes of environmental phenomena in various regions are provided. Scaling laws for both hydrodynamics and structural mechanics model testing are given. Wind-tunnel testing requirements are addressed. Selected industry standards, guidelines, and recommended practices useful for ship-shaped offshore installations are listed.

The methods and practices presented in this book cover all core technologies that are essential to better understand designing, building, and operating ship-shaped offshore installations in some fashion. We certainly hope that this book, with its advanced methodologies as well as emerging practices together with the list of carefully selected references, is seen and received as a handy resource and also that it meets the needs of practicing engineers and engineers-in-training to a good degree. This book should also be well suited as a textbook for university students in the fields of naval architecture and offshore civil, architectural, and mechanical engineering.

When this book is used as a textbook for undergraduate university students during a 45-hour single-semester class, the fundamentals and some current practices in all chapters should be studied. For postgraduate students, who may be approaching the topics in depth, the detailed methodologies presented in some selected chapters should be studied. For instance, those who are more likely to be interested in structural mechanics and limit-state design may begin with Chapter 1, “Overview of Ship-Shaped Offshore Installations” and focus on Chapters 5 through 8. Of course, it will also be a good idea for graduate-course students in a higher level to concentrate on and further explore any specific chapter, for example, Chapter 6, “Ultimate
Limit-State Design.” Related theoretical and numerical calculations using the closed-form expressions and/or computer programs, where available, can be used.

We hope that future revisions of this book will be made more useful and even more attractive to a wide spectrum of its readers and users; therefore, pertinent feedback and suggestions are encouraged, both by the publisher and the authors, and will be fully considered for future editions.