This concise textbook is an introduction to econometrics from the Bayesian viewpoint. It begins with an explanation of the basic ideas of subjective probability and shows how subjective probabilities must obey the usual rules of probability to ensure coherency. It then turns to the definitions of the likelihood function, prior distributions, and posterior distributions. It explains how posterior distributions are the basis for inference and explores their basic properties. The Bernoulli distribution is used as a simple example. Various methods of specifying prior distributions are considered, with special emphasis on subject-matter considerations and exchange ability. The regression model is examined to show how analytical methods may fail in the derivation of marginal posterior distributions, which leads to an explanation of classical and Markov chain Monte Carlo (MCMC) methods of simulation. The latter is proceeded by a brief introduction to Markov chains. The remainder of the book is concerned with applications of the theory to important models that are used in economics, political science, biostatistics, and other applied fields. These include the linear regression model and extensions to Tobit, probit, and logit models; time series models; and models involving endogenous variables.

Edward Greenberg is Professor Emeritus of Economics at Washington University, St. Louis, where he served as a Full Professor on the faculty from 1969 to 2005. Professor Greenberg also taught at the University of Wisconsin, Madison, and has been a Visiting Professor at the University of Warwick (UK), Technion University (Israel), and the University of Bergamo (Italy). A former holder of a Ford Foundation Faculty Fellowship, Professor Greenberg is the coauthor of four books: Wages, Regime Switching, and Cycles (1992), The Labor Market and Business Cycle Theories (1989), Advanced Econometrics (1983, revised 1991), and Regulation, Market Prices, and Process Innovation (1979). His published research has appeared in leading journals such as the American Economic Review, Econometrica, Journal of Econometrics, Journal of the American Statistical Association, Biometrika, and the Journal of Economic Behavior and Organization. Professor Greenberg’s current research interests include dynamic macroeconomics as well as Bayesian econometrics.
Introduction to Bayesian Econometrics

EDWARD GREENBERG

Washington University, St. Louis
Contents

List of Figures page ix
List of Tables xi
Preface xiii

Part I Fundamentals of Bayesian Inference

1 Introduction 3
 1.1 Econometrics 3
 1.2 Plan of the Book 4
 1.3 Historical Note and Further Reading 5

2 Basic Concepts of Probability and Inference 7
 2.1 Probability 7
 2.1.1 Frequentist Probabilities 8
 2.1.2 Subjective Probabilities 9
 2.2 Prior, Likelihood, and Posterior 12
 2.3 Summary 18
 2.4 Further Reading and References 19
 2.5 Exercises 19

3 Posterior Distributions and Inference 20
 3.1 Properties of Posterior Distributions 20
 3.1.1 The Likelihood Function 20
 3.1.2 Vectors of Parameters 22
 3.1.3 Bayesian Updating 24
 3.1.4 Large Samples 25
 3.1.5 Identification 28
 3.2 Inference 29
 3.2.1 Point Estimates 29
Contents

3.2.2 Interval Estimates 31
3.2.3 Prediction 32
3.2.4 Model Comparison 33
3.3 Summary 38
3.4 Further Reading and References 38
3.5 Exercises 39

4 Prior Distributions 41
4.1 Normal Linear Regression Model 41
4.2 Proper and Improper Priors 43
4.3 Conjugate Priors 44
4.4 Subject-Matter Considerations 47
4.5 Exchangeability 50
4.6 Hierarchical Models 52
4.7 Training Sample Priors 53
4.8 Sensitivity and Robustness 54
4.9 Conditionally Conjugate Priors 54
4.10 A Look Ahead 56
4.11 Further Reading and References 57
4.12 Exercises 58

Part II Simulation 63

5 Classical Simulation 63
5.1 Probability Integral Transformation Method 63
5.2 Method of Composition 65
5.3 Accept–Reject Algorithm 66
5.4 Importance Sampling 70
5.5 Multivariate Simulation 72
5.6 Using Simulated Output 72
5.7 Further Reading and References 74
5.8 Exercises 75

6 Basics of Markov Chains 76
6.1 Finite State Spaces 76
6.2 Countable State Spaces 81
6.3 Continuous State Spaces 85
6.4 Further Reading and References 87
6.5 Exercises 87

7 Simulation by MCMC Methods 90
7.1 Gibbs Algorithm 91
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.1 Basic Algorithm</td>
<td>91</td>
</tr>
<tr>
<td>7.1.2 Calculation of Marginal Likelihood</td>
<td>95</td>
</tr>
<tr>
<td>7.2 Metropolis–Hastings Algorithm</td>
<td>96</td>
</tr>
<tr>
<td>7.2.1 Basic Algorithm</td>
<td>96</td>
</tr>
<tr>
<td>7.2.2 Calculation of Marginal Likelihood</td>
<td>101</td>
</tr>
<tr>
<td>7.3 Numerical Standard Errors and Convergence</td>
<td>102</td>
</tr>
<tr>
<td>7.4 Further Reading and References</td>
<td>103</td>
</tr>
<tr>
<td>7.5 Exercises</td>
<td>105</td>
</tr>
</tbody>
</table>

Part III Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Linear Regression and Extensions</td>
<td>111</td>
</tr>
<tr>
<td>8.1 Continuous Dependent Variables</td>
<td>111</td>
</tr>
<tr>
<td>8.1.1 Normally Distributed Errors</td>
<td>111</td>
</tr>
<tr>
<td>8.1.2 Student-(t) Distributed Errors</td>
<td>114</td>
</tr>
<tr>
<td>8.2 Limited Dependent Variables</td>
<td>117</td>
</tr>
<tr>
<td>8.2.1 Tobit Model for Censored Data</td>
<td>117</td>
</tr>
<tr>
<td>8.2.2 Binary Probit Model</td>
<td>122</td>
</tr>
<tr>
<td>8.2.3 Binary Logit Model</td>
<td>126</td>
</tr>
<tr>
<td>8.3 Further Reading and References</td>
<td>129</td>
</tr>
<tr>
<td>8.4 Exercises</td>
<td>132</td>
</tr>
<tr>
<td>9 Multivariate Responses</td>
<td>134</td>
</tr>
<tr>
<td>9.1 SUR Model</td>
<td>134</td>
</tr>
<tr>
<td>9.2 Multivariate Probit Model</td>
<td>139</td>
</tr>
<tr>
<td>9.3 Panel Data</td>
<td>144</td>
</tr>
<tr>
<td>9.4 Further Reading and References</td>
<td>149</td>
</tr>
<tr>
<td>9.5 Exercises</td>
<td>151</td>
</tr>
<tr>
<td>10 Time Series</td>
<td>153</td>
</tr>
<tr>
<td>10.1 Autoregressive Models</td>
<td>153</td>
</tr>
<tr>
<td>10.2 Regime-Switching Models</td>
<td>158</td>
</tr>
<tr>
<td>10.3 Time-Varying Parameters</td>
<td>161</td>
</tr>
<tr>
<td>10.4 Time Series Properties of Models for Panel Data</td>
<td>165</td>
</tr>
<tr>
<td>10.5 Further Reading and References</td>
<td>166</td>
</tr>
<tr>
<td>10.6 Exercises</td>
<td>167</td>
</tr>
<tr>
<td>11 Endogenous Covariates and Sample Selection</td>
<td>168</td>
</tr>
<tr>
<td>11.1 Treatment Models</td>
<td>168</td>
</tr>
<tr>
<td>11.2 Endogenous Covariates</td>
<td>173</td>
</tr>
<tr>
<td>11.3 Incidental Truncation</td>
<td>175</td>
</tr>
</tbody>
</table>
Contents

11.4 Further Reading and References 179

11.5 Exercises 180

A Probability Distributions and Matrix Theorems

A.1 Probability Distributions 182
- A.1.1 Bernoulli 182
- A.1.2 Binomial 182
- A.1.3 Negative Binomial 183
- A.1.4 Multinomial 183
- A.1.5 Poisson 183
- A.1.6 Uniform 183
- A.1.7 Gamma 184
- A.1.8 Inverted or Inverse Gamma 184
- A.1.9 Beta 185
- A.1.10 Dirichlet 185
- A.1.11 Normal or Gaussian 186
- A.1.12 Multivariate and Matricvariate Normal or Gaussian 186
- A.1.13 Truncated Normal 188
- A.1.14 Univariate Student-\(t\) 188
- A.1.15 Multivariate \(t\) 188
- A.1.16 Wishart 190
- A.1.17 Inverted or Inverse Wishart 190
- A.1.18 Multiplication Rule of Probability 190

A.2 Matrix Theorems 191

B Computer Programs for MCMC Calculations

192

Bibliography 194

Author Index 200

Subject Index 202
List of Figures

2.1 Beta distributions for various values of α and β
page 16

2.2 Prior, likelihood, and posterior for coin-tossing example
18

4.1 Prior and posterior distributions for coefficient of union membership
50

5.1 Target and proposal density to sample from Beta(3, 3)
68

5.2 Target and proposal density to sample from $N(0, 1)$
69

5.3 Simulation results for $Z = XY$, where $X \sim$ Beta(3, 3) and $Y \sim$ Beta(5, 3)
73

6.1 Random walk, $p = q = 0.5$
82

6.2 Random walk, $p = 0.55, q = 0.45$
83

7.1 Simulation results for MH sampling of Beta(3, 4) with $U(0, 1)$ proposal
100

7.2 Autocorrelations of $X^{(g)}$
104

8.1 Posterior distributions of β_U and σ^2, Gaussian errors
113

8.2 Autocorrelations of β_U and σ^2, Gaussian errors
114

8.3 Posterior distributions of β_U and σ^2, Student-t errors
116

8.4 Autocorrelations of β_U and σ^2, Student-t errors
117

8.5 Posterior distributions of β: Tobit model, Mroz data
122

8.6 Predictive distributions of hours worked: Tobit model, Mroz data. Left: women with young children; right: women with older children
123

8.7 Posterior distributions of β: computer ownership example, probit model
127

8.8 Posterior distributions of β: computer ownership example, logit model
130

9.1 Summary of β_F
138

9.2 Summary of β_C
139
<table>
<thead>
<tr>
<th></th>
<th>List of Figures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Posterior distributions of β_U and mean(b_2)</td>
<td>150</td>
</tr>
<tr>
<td>10.1</td>
<td>Probability of recession</td>
<td>161</td>
</tr>
<tr>
<td>10.2</td>
<td>Time-varying slope</td>
<td>165</td>
</tr>
<tr>
<td>11.1</td>
<td>Selected coefficients: incidental truncation model, Mroz data</td>
<td>180</td>
</tr>
</tbody>
</table>
List of Tables

3.1 Jeffreys Guidelines page 35
3.2 Bayes Factors for Selected Possible Outcomes 38
4.1 β_U as a Function of Hyperparameters β_{U0} and $B_{UU,0}$ 54
8.1 Summary of Posterior Distribution: Tobit Model, Mroz Data 121
8.2 Summary of Posterior Distribution: Probit Model, Computer Example 126
8.3 Summary of Posterior Distribution: Logit Model, Computer Example 129
9.1 Summary of Posterior Distribution of β_F: Grunfeld Data, SUR Model 138
9.2 Summary of Posterior Distribution of β_C: Grunfeld Data, SUR Model 139
9.3 Means of Posterior Distribution of Contemporaneous Correlations: Grunfeld Data, SUR Model 140
9.4 Summary of Prior and Posterior Distributions of β and σ_{12}: Rubinfeld Data 144
9.5 Summary of Posterior Distribution: Panel Data Model, Vella–Verbeek Data 149
10.1 Summary of Posterior Distribution: AR(1) Errors 158
10.2 Parameter Estimates for GDP Data 161
10.3 Summary of Posterior Distribution: Time Varying Parameter Model 164
11.1 Summary of Posterior Distribution: Probit Selection Model, Mroz Data 179
Preface

To Instructors and Students

THIS BOOK IS a concise introduction to Bayesian statistics and econometrics. It can be used as a supplement to a frequentist course by instructors who wish to introduce the Bayesian viewpoint or as a text in a course in Bayesian econometrics supplemented by readings in the current literature.

While the student should have had some exposure to standard probability theory and statistics, the book does not make extensive use of statistical theory. Indeed, because of its reliance on simulation techniques, it requires less background in statistics and probability than do most books that take a frequentist approach. It is, however, strongly recommended that the students become familiar with the forms and properties of the standard probability distributions collected in Appendix A.

Since the advent of Markov chain Monte Carlo (MCMC) methods in the early 1990s, Bayesian methods have been extended to a large and growing number of applications. This book limits itself to explaining in detail a few important applications. Its main goal is to provide examples of MCMC algorithms to enable students and researchers to design algorithms for the models that arise in their own research. More attention is paid to the design of algorithms for the models than to the specification and interpretation of the models themselves because we assume that the student has been exposed to these models in other statistics and econometrics classes.

The decision to keep the book short has also meant that we have taken a stand on some controversial issues rather than discuss a large number of alternative methods. In some cases, alternative approaches are discussed in end of chapter notes.

Exercises have been included at the end of the chapters, but the best way to learn the material is for students to apply the ideas to empirical applications of their choice. Accordingly, even though it is not explicitly stated, the first exercise at the end of every chapter in Part III should direct students to formulate a model; collect
Preface

data; specify a prior distribution on the basis of previous research design and, if necessary, program an algorithm; and present the results.

A link to the Web site for the course may be found at my Web site: http://edg.wustl.edu. The site contains errata, links to data sources, some computer code, and other information.

Acknowledgments

I would like to acknowledge and offer my sincere gratitude to some of the people who have helped me throughout my career. On the professional side, I start with my undergraduate years at the business school of New York University, where Abraham Gitlow awakened my interest in economics. My first statistics course was with F. J. Viser and my second with Ernest Kurnow, who encouraged me to continue my studies and guided me in the process.

At the University of Wisconsin–Madison, I was mentored by, among others, Peter Steiner and Guy Orcutt. Econometrics was taught by Jack Johnston, who was writing the first edition of his pathbreaking book, and I was fortunate to have Arthur Goldberger and Arnold Zellner as teachers and colleagues. My first mathematical statistics course was with Enders Robinson, and I later audited George Box’s class, where I received my first exposure to Bayesian ideas. Soon afterward, Zellner began to apply the methods to econometrics in a workshop that I attended.

My interest in Bayesian methods was deepened at Washington University first by E. T. Jaynes and then by Siddhartha Chib. Sid Chib has been my teacher, collaborator, and friend for the last 15 years. His contributions to Bayesian statistics, econometrics, and MCMC methods have had enormous impact. I have been extremely fortunate to have had the opportunity to work with him. The students in my courses in Bayesian econometrics contributed to my understanding of the material by their blank stares and penetrating questions. I am most grateful to them.

My colleagues and the staff of the Economics Department at Washington University have always been extremely helpful to me. I am delighted to thank them for their support.

I am most grateful to my editor at Cambridge University Press, Scott Parris, for suggesting the book, and for his continuing encouragement and support, and to Kimberly Twist, Editorial Assistant at Cambridge, for her help in the publication process.

I am pleased to acknowledge the comments of Andrew Martin, James Morley, and two anonymous reviewers on various drafts of this book and, especially, those of Ivan Jeliazkov, who read it most carefully and thoughtfully and tested it on his students. All remaining errors are, of course, mine.
I am grateful to Professor Chang-Jin Kim for permission to utilize his software to compute some of the examples in Chapter 10.

On the personal side, I thank Arthur and Aida, Lisa and Howard, my grandchildren, and my colleagues and friends, particularly Sylvia Silver, Karen Rensing, Ingrid and Wilhelm Neuefeind, Maureen Regan and Sid Chib, Jasmine and Steve Fazzari, and Camilla and Piero Ferri.

In December 2005, my wife of more than 46 years passed away. I dedicate this book to Joan’s memory.