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Statistical physics of liquids

A liquid in thermodynamic equilibrium is described at the macroscopic level in terms of

a few characteristic variables such as temperature T , pressure P , volume V , the (average)

number of particles N , mass density ρ0, etc. (Fermi, 1956). The thermodynamic properties

listed above are not all independent and are related through a relation termed the equation

of state. The equilibrium liquid transforms into a crystalline solid when its temperature T

falls below a characteristic value Tm. The latter is termed the freezing point of the liquid

at the corresponding pressure. The liquid state involves random motion of the constituent

particles, each of which represents a basic microscopic unit for the system. The normal liq-

uid is isotropic in a time-averaged sense. At freezing this isotropic symmetry of the normal

liquid state is spontaneously broken. The crystalline state has a characteristic long-range

order of the individual microscopic units. The transformation of the liquid into a crystalline

solid involves the absorption of latent heat. This transformation is somewhat distinct from

the condensation of the gaseous state into the liquid state. In the later case both the states

are disordered. In Fig. 1.1 we display schematically a phase diagram showing the differ-

ent equilibrium states for the corresponding values of the thermodynamic properties T

and P . For example, the horizontal arrow in Fig. 1.1 indicates that as we cross the line

separating the phases a transition from the liquid to the crystalline state occurs. This is

accompanied by a discontinuous change of the thermodynamic properties (such as the vol-

ume V ) and is called a first-order transition. The coexistence line of the liquid and gaseous

states terminates at the critical point. Beyond this point the transformation from one state

to another occurs through a continuous, or second-order, phase transition. For the solid

and the liquid states no such termination of the phase line occurs. The corresponding dia-

gram showing the existence of the phases in the P–T plane is presented in Fig. 1.2. The

part of the P–T plane which is not physically accessible to a single phase is marked as

the coexistence region. Transformation from one state to another occurs here. The phase

diagrams describe the equilibrium states as a function of the thermodynamic parameters.

However, almost all liquids can, with varying degrees of ease, be supercooled below Tm

without developing long-range order of the crystalline state. The supercooled liquid devel-

ops very slow dynamics. This slowing down is far more drastic than the decrease in the

average speed of the liquid particles for the cooling to lower temperatures. The time taken

for a characteristic fluctuation to relax to equilibrium increases by orders of magnitude as
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2 Statistical physics of liquids

Fig. 1.1 The equilibrium phase diagram (schematic) of a simple fluid in the pressure (P) and

temperature (T ) plane.

Fig. 1.2 The equilibrium phase diagram (schematic) of a simple fluid in the density n (equivalent to

n0 in the text) and temperature (T ) plane. The regions marked for coexistence are unavailable for a

single phase and represent transformation.

the liquid is increasingly supercooled. The viscosity of the liquid increases below Tm until

a situation in which the liquid stops flowing and transforms into an amorphous solid is

reached. We will study in this book models for understanding the behavior of the liquid

at the freezing point Tm and beyond. Our treatment involves primarily a coarse-grained

picture of the microscopic-level description of the liquid.
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1.1 Basic statistical mechanics 3

1.1 Basic statistical mechanics

The microscopic description of the liquid is formulated here by treating the individual

microscopic units in terms of the laws of classical physics. The justification of the clas-

sical approximation depends on the value of the thermal de Broglie wavelength �0 =
h/

√
2πmkBT corresponding to the average momentum of the liquid particles (of mass

m) at a temperature T . kB = 1.38 × 10−16 erg/K is the Boltzmann constant. If the mean

nearest-neighbor separation of the liquid particles l0 ≃ ρ
−1/3
0 is such that the ratio ξTr =

�0/ l0 ≪ 1 then the classical description is justified. For most liquids (Hansen and

McDonald, 1986; Barrat and Hansen, 2003) barring hydrogen and neon, this ratio is small

near the triple point. For molecular liquids another characteristic quantity, namely the ratio

ξR = �Rot/T between the characteristic rotational temperature �Rot = �
2/(2I kB) (I is

the molecular moment of inertia of the molecule) and temperature T should also be small.

However, as the temperature T falls and density ρ0 increases, ξTr increases. In the classi-

cal approximation the contributions to the thermodynamic properties from the kinetic and

interaction parts of the Hamiltonian can be obtained separately. If Re represents the abso-

lute value of the ratio of the kinetic and potential parts of the total energy of the system of

particles then Re ∼ 1 corresponds to the liquid state. On the other hand, for the gaseous

and solid states we have Re ≫ 1 and Re ≪ 1, respectively. The liquid state thus rep-

resents an intermediate between two extremes. Alternatively, this characterization of the

liquid state can be done in terms of the interaction potential. Let a pair of particles in the

system interact via a potential of depth ∼ǫ and range ∼σ . The liquid state will correspond

to the particles being cohesive, which requires that the total volume V ∼ Nσ 3 and the

average kinetic energy kBT ∼ ǫ. Indeed, the intermediate nature of the liquid state makes

it particularly difficult to develop a quantitatively accurate model for its thermodynamic

or dynamic properties at high densities. Both for dilute gases and for low-density solids

the corresponding idealized model, namely the perfect gas and the harmonic solid, can be

treated exactly. Such a reference state is lacking for a high-density liquid. In this book we

will describe how the methods of classical statistical mechanics have been used to develop

models for strongly interacting liquids and further extended to gain an understanding of

the properties of deeply supercooled states.

1.1.1 Thermodynamic functions

The first law of thermodynamics provides us with a definition of the internal energy U as

a property of the equilibrium thermodynamic state. The second law of thermodynamics

defines another state function S representing the thermodynamic entropy of the system.

The first two laws are expressed in terms of the basic equation treating the variations of U

and S as exact differentials,

T d S = dU + P dV − μ d N̄ , (1.1.1)

where V is the volume and N̄ is the number of particles N in the system. Note that the

number of particles N̄ is used here as a macroscopic (extensive) thermodynamic property
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4 Statistical physics of liquids

of the system (similar to the volume V ). In order to distinguish it from the number of

particles N in the system in a microscopic picture (to be used later) we denote it with a bar.

μ is the chemical potential. The internal energy U can be treated as a function of T and V ,

giving the differential,

dU = cv dT +
(

∂U

∂V

)

T

dV, (1.1.2)

where cv = (∂U/∂T )V is the specific heat at constant volume. Using eqn. (1.1.2) in eqn.

(1.1.1) and the fact that d S is an exact differential, we obtain the thermodynamic relation

(

∂U

∂V

)

T

= T

(

∂ P

∂T

)

V

− P. (1.1.3)

From the second law of thermodynamics follows the entropy function S of the thermo-

dynamic state. As a direct consequence of the second law it follows that for an isolated

system the entropy S never decreases. Equivalently, for a change from a state A to another

state B (Fermi, 1936)

S(B) − S(A) ≤
∫ B

A

d Q

T
, (1.1.4)

where the equality holds for a reversible change. Thus for an isolated system going through

an infinitesimal change the heat supplied �Q ≤ T �S. Using the first law, this inequality

leads to

�U + P �V − T �S ≤ 0. (1.1.5)

For a constant-temperature and constant-volume process therefore we have �(U−T S)≤ 0.

Hence for an isolated system the function F = U −T S always decreases and equilibrium is

reached when the function F reaches a minimum. On the other hand, if the temperature T

and pressure P remain constant, the inequality (1.1.5) tells us that �(U − T S + PV ) ≤ 0.

Therefore in constant-temperature, constant-pressure processes the thermodynamic func-

tion G = U − T S + PV ≤ 0 is minimized. F and G are called the Helmholtz and

Gibbs free energies, respectively. Using the result (1.1.1), the differentials of F and G are

obtained as

d F = dU − T d S − S dT

= −P dV + μ d N̄ − S dT (1.1.6)

dG = dU − T d S − S dT + P dV + V d P

= μ d N̄ + V d P − S dT . (1.1.7)

From the above equations it follows that the thermodynamic potentials F and G can be

treated as functions of the corresponding sets of thermodynamic variables, F ≡ F(T, V, N̄ )
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1.1 Basic statistical mechanics 5

and G ≡ G(T, P, N̄ ). For the Gibbs free energy the situation is somewhat special since,

apart from N̄ , the other two thermodynamic variables on which it depends are both inten-

sive properties, i.e., independent of the size of the system. We can write the Gibbs free

energy per particle as G(T, P, N̄ ) = N̄ g(T, P). We obtain, from eqn. (1.1.7), the chemical

potential μ as

μ =
(

∂G

∂ N̄

)

P,T

= g(T, P) =
G

N̄
, (1.1.8)

which is the Gibbs free energy per particle. Using the relation G = μN̄ in eqn. (1.1.7), we

obtain the very useful Gibbs–Duhem relation,

N̄ dμ − V d P + S dT = 0. (1.1.9)

The above relation implies that, at the transition for the coexisting phases at equal temper-

ature and pressure (d P = dT = 0 ), the chemical potentials of the two phases are also

equal,

μ1 = μ2. (1.1.10)

The Gibbs free energy per particle is continuous through the phase transition. However,

from eqn. (1.1.9) it follows that

−
(

∂μ

∂ P

)

T

=
V

N̄
= v, (1.1.11)

(

∂μ

∂T

)

P

=
S

N̄
= s. (1.1.12)

Thus the first derivative of the Gibbs free energy is discontinuous at the transition (hence

the name first-order transition). The respective amounts of discontinuity are equal to the

changes in specific volume and entropy for the two phases across the transition. We there-

fore obtain

−
(

∂�μ

∂T

)

P

/(

∂�μ

∂ P

)

T

=
�s

�v
. (1.1.13)

Since the change in Gibbs free energy (per particle) �μ is a function of the intensive vari-

ables P and T , we can use the chain rule to write the LHS of eqn. (1.1.13) as (∂ P/∂T )�μ.

At the transition �μ is zero and hence the corresponding derivative is obtained as

d P(T )

dT
=

(

∂ P

∂T

)

�μ=0

=
�s

�v
. (1.1.14)

Using the fact that at the transition the temperature T remains constant, the difference

between the specific entropies is �s = L/T , where L is the latent heat of the transition.

Hence, denoting the change of specific volume between the two phases as �v = v2 − v1,
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6 Statistical physics of liquids

the above equation for the rate of change of pressure P at coexistence with temperature T

is obtained as

d P(T )

dT
=

L

T (v2 − v1)
. (1.1.15)

The above equation is termed the Clapeyron equation.

1.1.2 The classical N-particle system

We begin with a review of a few basic results concerning a fluid as a classical statistical

mechanical system. We consider a fluid as a system of volume V containing N particles of

mass m and following Newton’s laws of motion. The Hamiltonian for the system is given

by the sum of a kinetic part K (p1, . . . , pN ) and a potential part U (r1, . . . , rN ),

H =
N
∑

α=1

p2
α

2m
+ U (r1, . . . , rN )

=
N
∑

α=1

p2
α

2m
+

1

2

′
∑

α,β

u(rαβ), (1.1.16)

where rα and pα , respectively, denote the position and momentum of the αth particle and

rαβ = |rα − rβ |. We assume that the particles of the fluid interact through a two-body

potential u(rαβ) dependent on the vector rαβ connecting the two interacting particles. In

an isotropic system u is a function of only rαβ . We treat here the simplified case in which

there is no external potential. The prime in the summation in the second term on the RHS of

(1.1.16) indicates that the α = β term is excluded. The equations of motion of the particles

are given by

ṙα ≡
drα

dt
=

∂ H

∂pα

, ṗα ≡
dpα

dt
= −

∂ H

∂rα

, (1.1.17)

for α = 1, . . . , N . These equations with appropriate initial conditions determine the clas-

sical dynamics of the N -particle system. In the phase-space description the system is

described in terms of a single phase point in the 6N -dimensional phase space involving

the variables {rα, pα} for the N particles. The dynamics of the system is then represented

by the trajectory of a single phase point in the phase space. The physically measured value

of a dynamic variable is then given by an average on the phase-space trajectory. In equi-

librium such an average is replaced, using the ergodic hypothesis (Dorfman, 1999), by

an average over an appropriate ensemble representative of the system. Each member of

the ensemble is an identical copy of the system evolving independently under the above

equations of motion. The “fluid” constituted by these points in the phase space has a char-

acteristic density termed the phase-space density f (N )(rN , pN , t). This is the density of

representative points corresponding to the members of the ensemble in any particular part

of the phase space. Thus f (N ) dr1 dp1 · · · drN dpN is the number of phase points in an
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1.1 Basic statistical mechanics 7

elementary volume drN dpN at time t . It also represents the probability that a particular

member of the ensemble will be in a state in which the position and momentum coordinates

of the i th particle (for i = 1, . . . , N ) lie in the ranges ri to ri + dri and pi to pi + dpi ,

respectively. Since the total number of ensemble members is fixed, we can maintain the

normalization
∫

drN dpN f (N )(rN , pN , t) = 1, (1.1.18)

where we have used the notation dr1 dp1 · · · drN dpN ≡ drN dpN .

1.1.3 The BBGKY hierarchy equations

The time evolution of f (N ) is given by the Liouville equation, which is obtained by apply-

ing the continuity equation for the “incompressible fluid” formed by the phase points of

the ensemble. Therefore

∂ f (N )

∂t
+

N
∑

α=1

[

∂ f (N )

∂rα

· ṙα +
∂ f (N )

∂pα

· ṗα

]

= 0. (1.1.19)

Using the equation of motion eqn. (1.1.17), we obtain from (1.1.19)

∂ f (N )

∂t
+ {H, f (N )} = 0, (1.1.20)

with the Poisson bracket between variables A and B being defined as

{A, B} =
N
∑

α=1

[

∂ A

∂rα

·

∂ B

∂pα

−
∂ A

∂pα

·

∂ B

∂rα

]

. (1.1.21)

The above equation for the time evolution of f (n) is often written as
[

∂

∂t
+ iL

]

f (N ) = 0 (1.1.22)

in terms of the Liouville operator L:

L ≡ i{H, }. (1.1.23)

The formal solution of the above equation for the N -particle distribution function is

obtained as

f (N )(t) = exp[−iLt] f (N )(0). (1.1.24)

It is useful to compare the above result for the time evolution of f (N )(t) with the time

evolution of an operator A(rN , pN ). Since A is not explicitly dependent on t its change

with time is controlled by that of {rN , pN }. Therefore the equation of motion for A is

obtained as

∂ A

∂t
=

N
∑

α=1

[

∂ A

∂rα

· ṙα +
∂ A

∂pα

· ṗα

]

≡ iLA. (1.1.25)
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8 Statistical physics of liquids

The solution of the above equation gives for the time dependence of A(t) the result

A(t) = exp[+iLt]A(0). (1.1.26)

The time dependence of f (N ) is therefore different from that of a dynamic variable. It rep-

resents the motion of the phase points in the phase space. The Liouville equation obtained

for eqns. (1.1.17) makes this dynamics similar to that of an incompressible fluid.

Let us consider the number of representative points present in a small elementary volume

at t = 0. With the progress of time this elementary volume stretches out, changing its

shape, but its total volume remains unchanged. In mathematical terms, in the Hamiltonian

dynamics, the Jacobian of the corresponding transformation of the phase-space variables

is unity,

J [rN (0), pN (0) → rN (t), pN (t)] = 1. (1.1.27)

This is termed the Liouville theorem. The phase-space trajectories of the different points

never cross each other since the dynamics at this level is completely deterministic. Starting

from an initial configuration the evolution is always unique.

The Liouville equation describes the dynamics at the level of N particles. Using the

definition (1.1.16) of the Hamiltonian for the N -particle system interacting through the

two-body potential, the operator L in eqn. (1.1.23) is further simplified. The derivative of

H with respect to the particle coordinates is given by

∂ H

∂rα

=
′

∑

β

∂u(rαβ)

∂rα

≡ −Fαβ , (1.1.28)

Fαβ being the force on the αth particle due to interaction with the βth particle. The prime

in the sum indicates that the α = β term is absent. Note that in the definition (1.1.16) for H

we have dropped for simplicity the presence of any possible external potential and hence

there is no external force on the particles here. This operator L is expressed as a sum of

one-body and two-body terms:

L =
N
∑

α=1

Sα +
1

2

N ′
∑

α,β=1

θα,β , (1.1.29)

Sα ≡
pα

m
· ∇rα , (1.1.30)

θα,β = Fαβ · (∇pα − ∇pβ
), (1.1.31)

where the prime in the sum indicates that the terms for α = β are omitted. The above form

of the Liouville operator is conveniently used to obtain a description of the dynamics at

a reduced level. Starting from the level of N particles, the reduced distribution function

giving the conditional probability of finding a reduced number of particles is defined. Thus

the s-particle (s < N ) reduced distribution function f (s) is defined as

f (s)(xs, t) =
N !

(N − s)!

∫

f (N )(xN , t)dxs+1 . . . dxN , (1.1.32)

www.cambridge.org/9780521858397
www.cambridge.org


Cambridge University Press
978-0-521-85839-7 — Statistical Physics of Liquids at Freezing and Beyond
Shankar Prasad Das
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Basic statistical mechanics 9

where the position rα and momentum pα for the αth particle are jointly denoted by the sin-

gle variable xα . The notation xn ≡ {x1, . . . , xs} is used as the argument in eqn. (1.1.32).

Starting from the Liouville equation (1.1.22) and integrating out the positions and momenta

for the (N − s) particles, the dynamical equation for the reduced function f (s) is

obtained as
⎧

⎨

⎩

∂

∂t
+

s
∑

i=1

pi

m
· ∇ri

+
1

2

s ′
∑

i, j=1

θi, j

⎫

⎬

⎭

f (s)(xs, t)

= −
s

∑

i=1

∫

dxs+1 θi,s+1 f (s+1)(x(s+1), t), (1.1.33)

where the prime in the double sum indicates the absence of the i = j term. The distribution

function f (N ) vanishes when the coordinate xα is at the limits of the integration, i.e., when

rα is outside the volume of the system or pα → ∞. Hence the terms in which the integrand

is a total derivative with respect to the integrated variable of position and momentum have

been set equal to zero in deriving eqn. (1.1.33). With some further simplifications eqn.

(1.1.33) for f (s) also reduces to the following form in terms of the force Fi j between the

i th and j th particles:
⎧

⎨

⎩

∂

∂t
+

s
∑

i=1

⎡

⎣

pi

m
·∇ri

+

⎛

⎝

s ′
∑

j=1

Fi j

⎞

⎠

· ∇pi

⎤

⎦

⎫

⎬

⎭

f (s)(xs, t)

= −
s

∑

i=1

∫

dxs+1 Fi,s+1 · ∇pi
f (s+1)(x(s+1), t). (1.1.34)

Equations (1.1.33) and (1.1.34) relate the distribution function f (s) to its counterpart at the

next level, i.e., f (s+1), and thus for s = 1, . . . , N eqn. (1.1.33) gives rise to a hierarchy of

N equations for the reduced distribution functions. This is known as the BBGKY hierarchy

of equations for classical dynamics. At the simplest level, an approximate solution for the

one-particle distribution function f (1)(r, p, t) is obtained from the first equation of the

BBGKY hierarchy:
(

∂

∂t
+

p1

m
· ∇r1

)

f (1)(x1, t) = −
∫

dr2

∫

dp2 F12 ·∇p1
f (2)(x1, x2, t). (1.1.35)

1.1.4 The Boltzmann equation

In order to reach a closed equation for the one-particle distribution function f (1)(x1, t)

from the above equation a relation linking the two-point function f (2)(x1, x2, t) to f (1) is

needed. The simplest approximation in this regard is to ignore all correlation between the

particles and use, in the mean-field approximation,

f (2)(x1, x2, t) ≈ f (1)(x1, t) f (1)(x2, t). (1.1.36)
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10 Statistical physics of liquids

Using this closure relation in eqn. (1.1.35), we obtain what is termed the Vlasov equation,

(

∂

∂t
+

p1

m
·∇r1

+ F̄1(r1, p1, t) · ∇p1

)

f (1)(r1, p1, t) = 0, (1.1.37)

where we have defined the average force exerted on particle 1 by other particles as

F̄1(r1, p1, t) =
∫

dr2

∫

dp2 F̄12 f (1)(r1, r2, p1, p2, t). (1.1.38)

The term involving F12 in eqn. (1.1.38) is similar to the contribution which would appear

in the presence of an external potential. Hence the Vlasov equation represents a colli-

sionless approximation in the presence of an effective mean field. The above description

of the dynamics is useful in plasma physics, in which long-range Coulomb forces are

present. However, this is not a good approximation for studying a liquid with short-range

interactions. In general, the RHS of eqn. (1.1.35) represents the contribution from the two-

body interaction term to the dynamic evolution of f (1)(x1, t) and is termed the collision

contribution. The above equation is therefore written in the schematic form

[

∂

∂t
+

p1

m
·∇r1

]

f (1)(r1, p1, t) =
(

∂ f (1)

∂t

)

coll

. (1.1.39)

The RHS of the equation involving interaction of two particles is approximated through dif-

ferent schemes with a proper closing relation for the hierarchy in terms of the one-particle

function. The most studied among the various approximations is the case of the Boltzmann

equation in which the RHS (∂ f (1)/∂t)coll is approximated in terms of binary-collision

contributions only. At low densities only two particles are likely to collide at a given point.

The evaluation of the two-point functions before collision is done with the approximation

of molecular chaos. Thus the factorization of eqn. (1.1.36) is applied. This again remains

valid at low densities when successive binary collisions are completely uncorrelated. The

collision of two particles at a point r is governed by the laws of classical mechanics.

The momenta of the particles before and that after collisions are denoted by {p1, p2} and
{

p′
1, p′

2

}

, respectively. The RHS of eqn. (1.1.39) is approximated as (Dorfman, 1999)

(

∂ f (1)

∂t

)

coll

=
1

m

∫

dp2 d�

(

dσ

d�

)

|p1 − p2|

×
[

f (1)
(

r, p′
1, t

)

f (1)
(

r, p′
2, t

)

− f (1)(r, p1, t) f (1)(r, p2, t)
]

.

(1.1.40)

where dσ/d� denotes the differential scattering cross section in solid angle d� defined

around the (p1−p2) vector of relative motion between the two particles before the collision.

The approximation (1.1.40) gives rise to the Boltzmann H theorem which implies that

the many-particle system evolves irreversibly to an equilibrium state. The time evolution
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