
1

Introduction

Mechanics provides a complete microscopic description of the state of a system.
When the equations of motion are combined with initial conditions and boundary
conditions, the subsequent time evolution of a classical system can be predicted. In
systems with more than just a few degrees of freedom such an exercise is imposs-
ible. There is simply no practical way of measuring the initial microscopic state of,
for example, a glass of water, at some instant in time. In any case, even if this was
possible we could not then solve the equations of motion for a coupled system of
1023 molecules.

In spite of our inability to fully describe the microstate of a glass of water, we are
all aware of useful macroscopic descriptions for such systems. Thermodynamics
provides a theoretical framework for correlating the equilibrium properties of
such systems. If the system is not at equilibrium, fluid mechanics is capable of pre-
dicting the macroscopic nonequilibrium behaviour of the system. In order for these
macroscopic approaches to be useful, their laws must be supplemented, not only
with a specification of the appropriate boundary conditions, but with the values
of thermophysical constants such as equation-of-state data and transport coeffi-
cients. These values cannot be predicted by macroscopic theory. Historically this
data has been supplied by experiments. One of the tasks of statistical mechanics
is to predict these parameters from knowledge of the interactions of the system’s
constituent molecules. This then is a major purpose for statistical mechanics.
How well have we progressed?

Equilibrium classical statistical mechanics is relatively well developed. The
basic ground rules – Gibbsian ensemble theory – have been known for the best
part of a century (Gibbs, 1902). The development of electronic computers in the
1950s provided unambiguous tests of the theory of simple liquids leading to a con-
sequently rapid development of integral equation and perturbation treatments of
liquids (Barker and Henderson, 1976). With the possible exceptions of phase equi-
libria and interfacial phenomena (Rowlinson and Widom, 1982) one could say that

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-85791-8 - Statistical Mechanics of  Nonequilibrium Liquids: Second Edition
Denis J. Evans and Gary Morriss
Excerpt
More information

http://www.cambridge.org/9780521857918
http://www.cambridge.org
http://www.cambridge.org


the equilibrium statistical mechanics of atomic fluids is a solved problem. Much of
the emphasis has moved to molecular, even macromolecular, liquids.

The nonequilibrium statistical mechanics of dilute atomic gases – kinetic
theory – is, likewise, essentially complete (Ferziger and Kaper, 1972). However,
attempts to extend kinetic theory to higher densities have been fraught with
severe difficulties. One might have imagined being able to develop a power-
series expansion of the transport coefficients in much the same way that one
expands the equilibrium equation of state in the virial series. Dorfman and
Cohen (1965; 1972) proved that such an expansion does not exist. The Navier–
Stokes transport coefficients are nonanalytic functions of density.

It was at about this time that computer simulations began to have an impact on
the field. In a celebrated paper, Kubo (1957) showed that linear transport coeffi-
cients could be calculated from a knowledge of the equilibrium fluctuations in
the flux associated with the particular transport coefficient. For example the
shear viscosity η, is defined as the ratio of the shear stress, −Pxy, to the shear
rate, ∂ux/∂y ; γ:

Pxy ; �hg: ð1:1Þ

The Kubo relation predicts that the limiting, small shear rate, viscosity, is given by:

h ¼ bV

ð1
0
ds kPxyð0ÞPxyðsÞl, ð1:2Þ

where b is the reciprocal of the absolute temperature T, multiplied by Boltzmann’s
constant kB, V is the system volume and the angle brackets denote an equilibrium
ensemble average. The viscosity is then the infinite time integral of the equilibrium,
autocorrelation function of the shear stress. Similar relations are valid for the other
Navier–Stokes transport coefficients such as the self diffusion coefficient, the
thermal conductivity, and the bulk viscosity (see Chapter 4).

Alder and Wainwright (1956) were the first to use computer simulations to
compute the transport coefficients of atomic fluids. What they found was unex-
pected. It was believed that at sufficiently long time, equilibrium autocorrelation
functions should decay exponentially. Alder and Wainwright discovered that in
two-dimensional systems, the velocity autocorrelation function which determines
the self-diffusion coefficient, only decays as t−1. Since the diffusion coefficient is
thought to be the integral of this function, we were forced to the reluctant con-
clusion that the self diffusion coefficient does not exist for two-dimensional
systems. It is presently believed that each of the Navier–Stokes transport
coefficients diverge in two dimensions (Pomeau and Resibois, 1975).
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This does not mean that two-dimensional fluids are infinitely resistant to shear
flow. Rather, it means that the Newtonian constitutive relation Equation (1.1) is
an inappropriate definition of viscosity in two dimensions. There is no linear
regime close to equilibrium where Newton’s law (Equation 1.1), is valid. It is
thought that at small strain rates, Pxy % γlogγ. If this were the case then the limiting
value of the shear viscosity limγ→0−∂Pxy/∂γ would be infinite. All this presupposes
that steady laminar shear flow is stable in two dimensions. This would be an
entirely natural presumption on the basis of our three-dimensional experience.
However there is some evidence that even this assumption may be wrong (Evans
and Morriss, 1983b). Recent computer simulation data suggests that in two dimen-
sions, laminar flow may be unstable at small strain rates.

In three dimensions the situation is better. The Navier–Stokes transport coeffi-
cients appear to exist. However the nonlinear Burnett coefficients, higher-order
terms in the Taylor series expansion of the shear stress in powers of the strain
rate (Section 2.3, Section 9.5), are thought to diverge (Kawasaki and Gunton,
1973). These divergences are sometimes summarized in Dorfman’s Lemma
(Zwanzig, 1982): all relevant fluxes are nonanalytic functions of all relevant vari-
ables! The transport coefficients are thought to be nonanalytic functions of density,
frequency, and the magnitude of the driving thermodynamic force, the strain rate, or
the temperature gradient etc.

In this book we will discuss the framework of nonequilibrium statistical mech-
anics. We will not discuss in detail, the practical results that have been obtained.
Rather we seek to derive a nonequilibrium analog of the Gibbsian basis for equili-
brium statistical mechanics. At equilibrium we have a number of idealizations
which serve as standard models for experimental systems. Among these are the
well-known microcanonical, canonical, and grand canonical ensembles. The real
system of interest will not correspond exactly to any one particular ensemble,
but such models furnish useful and reliable information about the experimental
system. We have become so accustomed to mapping each real experiment
onto its nearest Gibbsian ensemble that we sometimes forget that the canonical
ensemble, for example, does not exist in Nature. It is an idealization.

A nonequilibrium system can be modeled as a perturbed equilibrium ensemble;
we will therefore need to add the perturbing field to the statistical mechanical
description. The perturbing field does work on the system – this prevents the
system from relaxing to equilibrium. This work is converted to heat, and the
heat must be removed in order to obtain a well-defined steady state. Therefore ther-
mostats will also need to be included in our statistical mechanical models. A major
theme of this book is the development of a set of idealized nonequilibrium systems
which can play the same role in nonequilibrium statistical mechanics as the
Gibbsian ensembles play at equilibrium.
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After a brief discussion of linear irreversible thermodynamics in Chapter 2, we
address the Liouville equation in Chapter 3. The Liouville equation is the funda-
mental vehicle of nonequilibrium statistical mechanics. We introduce its formal sol-
ution using mathematical operators called propagators (Section 3.3). In Chapter 3,
we also outline the procedures by which we identify statistical mechanical
expressions for the basic field variables of hydrodynamics.

After this background in both macroscopic and microscopic theory we go on to
derive the Green–Kubo relations for linear transport coefficients in Chapter 4 and
the basic results of linear response theory in Chapter 5. The Green–Kubo relations
derived in Chapter 4 relate thermal transport coefficients, such as the Navier–
Stokes transport coefficients, to equilibrium fluctuations. Thermal transport
processes are driven by boundary conditions. The expressions derived in Chapter 5
relate mechanical transport coefficients to equilibrium fluctuations. A mechanical
transport process is one that is driven by a perturbing external field which actually
changes the mechanical equations of motion for the system. In Chapter 5 we show
how the thermostatted linear mechanical response of many body systems is related
to equilibrium fluctuations.

In Chapter 6 we exploit similarities in the fluctuation formulae for the mechani-
cal and the thermal response, by deriving computer simulation algorithms for cal-
culating the linear Navier–Stokes transport coefficients. Although the algorithms
are designed to calculate linear thermal-transport coefficients, they employ mech-
anical methods. The validity of these algorithms is proved using thermostatted
linear-response theory (Chapter 5) and the knowledge of the Green–Kubo relations
provided in Chapter 4.

A diagrammatic summary of some of the common algorithms used to compute
shear viscosity is given in Figure 1.1. The Green–Kubo method simply consists of
simulating an equilibrium fluid under periodic boundary conditions and making the
appropriate analysis of the time-dependent stress fluctuations using Equation (1.2).
Gosling et al. (1973) proposed performing a nonequilibrium simulation of a system
subject to a sinusoidal transverse force. Monitoring the field-induced velocity
profile and extrapolating the results to infinite wavelength, the viscosity can be cal-
culated. Hoover and Ashurst (1975), used external reservoirs of particles to induce
a nearly planar shear in a model fluid. In the reservoir technique, the viscosity is
calculated by measuring the average ratio of the shear stress to the strain rate, in
the bulk of the fluid, away from the reservoir regions. The presence of the reservoir
regions gives rise to significant inhomogeneities in the thermodynamic properties
of the fluid and in the strain rate in particular. This leads to obvious difficulties
in the calculation of the shear viscosity. Lees and Edwards (1972), showed that
if one used “sliding brick” periodic boundary conditions, one could induce
planar Couette flow in a simulation. The so-called Lees–Edwards periodic
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boundary conditions enable one to perform homogeneous simulations of shear flow
in which the low Reynolds-number velocity profile is linear.

With the exception of the Green–Kubo method, these simulation methods all
involve nonequilibrium simulations. The Green–Kubo technique is useful in that
all linear transport coefficients can, in principle, be calculated from a single simu-
lation. It is restricted though, to only calculating linear transport coefficients. The
nonequilibrium methods, on the other hand, provide information about the non-
linear as well as the linear response of systems. They therefore provide a direct
link with rheology.

The use of nonequilibrium computer simulation algorithms, so-called
nonequilibrium molecular dynamics (NEMD), leads inevitably to the question of
the large field, nonlinear response. Indeed the calculation of linear transport coeffi-
cients using NEMD proceeds by calculating the nonlinear response and extrapolat-
ing the results to zero field. One of our main aims will be to derive a number of
nonlinear generalizations of the Kubo relations which give an exact framework
within which one can calculate and characterize transport processes far from equi-
librium (Chapter 7). Because of the divergences alluded to above, the nonlinear
theory cannot rely on power-series expansions about the equilibrium state. A
major system of interest is the nonequilibrium steady state. Theory enables us to
relate the nonlinear transport coefficients and mechanical quantities, like the

Green–Kubo

Homogeneous shear

Sinusoidal transverse force

Momentum reservoirs

Figure 1.1 Methods of determining the shear viscosity
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internal energy or the pressure, to transient fluctuations in the thermodynamic flux
which generates the nonequilibrium steady state (Chapter 7). We derive the transi-
ent time correlation function (TTCF, Section 7.3) and the Kawasaki representations
(Section 7.2) of the thermostatted nonlinear response. These results are exact and
do not require the nonlinear response to be an analytic function of the perturbing
fields. The theory also enables one to calculate specific heats, thermal-expansion
coefficients and compressibilities from knowledge of steady-state fluctuations
(Chapter 9). After we have discussed the nonlinear response, we present a resol-
ution of the van Kampen objection to linear response theory and to the Kubo
relations in Chapter 7.

An innovation in our theory is the use of reversible equations of motion which
incorporate a deterministic thermostat (Section 3.1). This innovation was motivated
by the needs imposed by nonequilibrium computer simulation. If one wants to use
any of the nonequilibrium methods depicted in Figure 1.1 to calculate the shear vis-
cosity, one needs a thermostat to achieve a reliable steady-state average. It is not
clear how to calculate the viscosity of a fluid whose temperature and pressure
are increasing in time.

The first deterministic thermostat, the so-called Gaussian thermostat, was
independently and simultaneously developed by Hoover and Evans (Hoover et al.,
1982) and Evans (1983a). It permitted homogeneous simulations of nonequilibrium
steady states using molecular-dynamics techniques. Hitherto molecular dynamics
had involved solving Newton’s equations for systems of interacting particles. As
work was performed on such a system in order to drive it away from equilibrium,
the system inevitably heated with the irreversible conversion of work into heat.

Hoover and Evans showed that if such a system evolved under their
thermostatted equations of motion, the so-called Gaussian isokinetic equations of
motion, the dissipative heat could be removed by a thermostatting force which
was part of the equations of motion themselves. Now, computer simulators had
been simulating nonequilibrium steady states for some years, but in the past the
dissipative heat was removed by simple ad hoc rescaling of the second moment
of the appropriate velocity. The significance of the Gaussian isokinetic equations
of motion was that since the thermostatting was part of the equations of motion
it could be analyzed theoretically using response theory. Earlier ad hoc rescaling
or Andersen’s stochastic thermostat (Andersen, 1980), could not be so easily ana-
lyzed. In Chapter 5 we prove that while the adiabatic (i.e. unthermostatted) linear
response of a system can be calculated as the integral of an unthermostatted
(i.e. Newtonian) equilibrium time-correlation function, the thermostatted linear
response is related to the corresponding thermostatted equilibrium time-correlation
function. These results are quite new and can be proved only because the
thermostatting mechanism is reversible and deterministic.
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It is natural to ask whether the “thermostatted” response depends upon the
details of the thermostatting mechanism. Provided the amount of heat Q,
removed by a thermostat within the characteristic microscopic relaxation time
τ, of the system is small compared to the enthalpy I, of the fluid (i.e. (τ dQ/dt)/
I < 1), we expect that the microscopic details of the thermostat will be unimportant.
In the linear regime, close to equilibrium, this will always be the case. Even for
systems far (but not too far), from equilibrium this condition is often satisfied. In
Section 5.4 we give a mathematical proof of the independence of the linear
response to the thermostatting mechanism.

Although originally motivated by the needs of nonequilibrium simulations, we
have now reached the point where we can simulate equilibrium systems at constant
internal energy E, at constant enthalpy I, or at constant temperature T, and pressure p.
If we employ the so-called Nosé–Hoover (Nosé, 1984b; Hoover, 1985) thermostat,
we can allow fluctuations in the state-defining variables while controlling their
mean values. These methods have had a major impact on computer simulation
methodology and practice.

To illustrate the point: in an ergodic system at equilibrium, Newton’s equations
of motion generate the molecular dynamics ensemble in which the number of par-
ticles, the total energy, the volume, and the total linear momentum are all precisely
fixed (N, E, V, Σpi). Previously this was the only equilibrium ensemble accessible to
molecular dynamics simulation. Now however we can use Gaussian methods to
generate equilibrium ensembles in which the precise value of say, the enthalpy and
pressure are fixed (N, E, p, Σpi). Alternatively, Nosé–Hoover equations of motion
could be used which generate the canonical ensemble (exp[−bH ]). Gibbs proposed
the various ensembles as idealized statistical distributions in phase space. Now we
have the dynamics that is capable of generating each of those distributions.

A new element in the theory of nonequilibrium steady states is the abandonment
of Hamiltonian dynamics. The Hamiltonian, of course, plays a central role in
Gibbs’ equilibrium statisticalmechanics. It leads to a compact and elegant description.
However the existence of a Hamiltonian which generates dynamical trajectories is,
as we will see, not essential.

In the space of relevant variables, neither the Gaussian thermostatted equations
of motion nor the Nosé–Hoover equations of motion can be derived from a
Hamiltonian. This is true even in the absence of external perturbing fields. This
implies, in turn, that the usual form of the Liouville equation, df/dt = 0, for the
N-particle distribution function f, is invalid. Thermostatted equations of motion
necessarily imply a compressible phase space.

The abandonment of a Hamiltonian approach to particle dynamics had, in fact,
been forced on us somewhat earlier. The Evans–Gillan equations of motion for heat
flow (Section 6.5), which predate both the Gaussian and Nosé–Hoover
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thermostatted dynamics, cannot be derived from a Hamiltonian. The Evans–Gillan
equations provide the most efficient presently known dynamics for describing heat
flow in systems close to equilibrium. A synthetic external field was invented so that
its interaction with a N-particle system precisely mimics the impact a real tempera-
ture gradient would have on the system. Linear response theory is then used to
prove that the response of a system to a real temperature gradient is identical to
the response to the synthetic Evans–Gillan external field.

We use the term synthetic to note the fact that the Evans–Gillan field does not
exist in Nature. It is a mathematical device used to transform a difficult boundary
condition problem, the flow of heat in a system bounded by walls maintained at
differing temperatures, into a much simpler mechanical problem. The Evans–
Gillan field acts upon the system in a homogeneous way permitting the use of
periodic rather than inhomogeneous boundary conditions. This synthetic field
exerts a force on each particle which is proportional to the difference of the par-
ticle’s enthalpy from the mean enthalpy per particle. The field thereby induces a
flow of heat in the absence of either a temperature gradient or of any mass flow.
No Hamiltonian is known which can generate the resulting equations of motion.

In a similar way Kawasaki showed that the boundary condition that corresponds
to planar Couette shear flow can be incorporated exactly into the equations of
motion. These equations are known as the SLLOD equations (Section 6.3). They
give an exact description of the shearing motion of systems arbitrarily far from
equilibrium. Again, no Hamiltonian can be found which is capable of generating
these equations.

When external fields or boundary conditions perform work on a system we have
at our disposal a very natural set of mechanisms for constructing nonequilibrium
ensembles in which different sets of thermodynamic state variables are used to
constrain, or define, the system. Thus we can generate on the computer,
or analyze theoretically, nonequilibrium analogs of the canonical, microcanonical,
or isobaric–isoenthalpic ensembles.

At equilibrium one is used to the idea of pairs of conjugate thermodynamic
variables generating conjugate equilibrium ensembles. In the canonical ensemble
particle number N, volume V, and temperature T, are the state variables whereas
in the isothermal–isobaric ensemble the role played by the volume is replaced by
the pressure, its thermodynamic conjugate. In the same sense one can generate con-
jugate pairs of nonequilibrium ensembles. If the driving thermodynamic force is X,
it could be a temperature gradient or a strain rate, and then one could consider the
(N, V, T, X ) ensemble or alternatively the conjugate (N, p, T, X ) ensemble.

However in nonequilibrium steady states one can go much further than this. The
dissipation, the heat removed by the thermostat per unit time dQ/dt, can always be
written as a product of a thermodynamic force, X, and a thermodynamic flux, J(Γ).
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If, for example, the force is the shear rate, γ, then the conjugate flux is the shear
stress, −Pxy. One can then consider nonequilibrium ensembles in which the thermo-
dynamic flux rather than the thermodynamic force is the independent state variable.
For example we could define the nonequilibrium steady state as an (N, V, T, J )
ensemble. Such an ensemble is, by analogy with electrical circuit theory, called a
Norton ensemble, while the case where the force is the state variable, (N, V, T, X ),
is called a Thévenin ensemble. A major postulate in this work is the macroscopic
equivalence of corresponding Norton and Thévenin ensembles.

The equations of motion for a system of particles which undergo collisions are
usually chaotic (although there are examples, like the wind-tree model, that are
not). The application of the ideas of modern dynamical systems theory has had a
large impact on nonequilibrium statistical mechanics in the last 15 to 20 years.
The books by Gaspard (1998), Dorfman (1999), Ott (2002) and Sprott (2003)
are more comprehensive than the development that we present in Chapter 8.
However, our approach is to begin with the characterization of chaos in a dynamical
system, and then to use the ideas of Ruelle (1978), Cvitanovic, and others (2005) to
show how to develop an understanding of the time evolution of both the probability
distribution and an arbitrary phase variable. Surprisingly, just the structure of the
theory gives a simple argument to show that the transport coefficients must be
non-negative.

The discovery of relations satisfied by the fluctuations in nonequilibrium steady
states has become a major area of activity in the last decade. The discovery of
the fluctuation theorem by Evans et al. (1993a), the derivations by Evans and
Searles (1994) and Gallavotti and Cohen (1995a) have sparked a great deal of
interest and controversy. The subsequent discovery of methods of calculating
free-energy differences using arbitrary nonequilibrium paths by Jarzynski
(1997) and Crooks (1998) has stimulated many experiments designed both to
confirm the theoretical predictions and to use the techniques in physical and
biological systems.

In the last chapter we introduce material which is quite recent and perhaps
controversial. We attempt to develop a thermodynamics of nonequilibrium
steady states which may be considered a nonlinear generalization of the conven-
tional linear irreversible thermodynamics treated in Chapter 2. The difficulty is
extending our notions of temperature and entropy to nonequilibrium systems.
We take as an axiom, the observation from computer simulation studies, that the
internal energy of the system is also a function of the field that perturbs the
system from equilibrium. Thus the internal energy U is a function of temperature,
volume, and the shear rate for a system undergoing Couette flow. We consider two
approaches; the first using the assumption of linear viscoelasticity, and the second
using a purely statistical mechanical treatment.
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What is surprising is that the steady-state nonequilibrium distribution function is
a singular and fractal object. This implies that the fine grained Gibbs entropy:

S ¼ �kB

ð
all G space

dG f ðG; tÞ ln f ðG; tÞ, ð1:3Þ

diverges to negative infinity. (If no thermostat is employed, the nonequilibrium
entropy is a constant of the motion Gibbs (1902)). The question of the expression
for the nonequilibrium entropy, and how to calculate it, remain unresolved.
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