Index

accelerator pulsed sources, 54
accelerator-based neutron sources, 3
pulsed operation, 4
steady spallation source, 5
time-of-flight, 4
acceptance diagrams, 237
observation plane, 238
trace neutron trajectories, 237
acceptance diagrams in phase-space, 239
complicated systems, codes, 239
construction of, 240
powerful picture, 239
simple systems, easy, 239
activation energy, 386
adiabatic approximation, 347
Advantages of neutrons, 7
Amorphous materials diffractometers, 166
epithermal neutrons, 167
hot neutron sources, 167
Anger camera, 304
electronic signal binned finely, 304
intensity-weighted positions, 304
multianode photomultipliers, 306
principle, 305
angle-wavelength correlation, 193
angle range, 193
large beam, 193
parallel reflecting planes, 193
angular distribution at a moderator surface, 46
Fermi approximation, 46–7
anharmonicity, 388
backscattering crystal-analyzer, 219
wavelength resolution minimized, 219
barn book, 94
beam benders, 257
beam monitor detectors, 295
known efficiency, 295
low efficiency, 295
pancake detectors, 295
thin windows, 295
bent crystals, 278
Poisson’s ratio, 278
Bloch Equation, 442
Blume-Maleyev equations, 424
Born approximation, 90
boron-coated detectors, 286
proportional counter operation, 287
bound- and free-atom scattering, 19
bound atom, 101
Bragg angle, 319
Bragg condition, 317
Bragg’s law, 319
Bragg-Laue condition, 317
Bragg-reflecting mirrors, 253
burst shape function, 270
back pulses, 270
curved slit, 270
straight slit, 270
capture electrons, 284
image plates, 284
self-powered detectors, 284
charge density, 118
chopper spectrometers, 206
as diffractometers, 206
brief polychromatic pulse, 206
direct geometry, 206
pulsed-source version, 206
SEQUOIA, 212
steady-source version, 207
chopper, \(T_0\), 207
energy selection, 207
fast neutrons, 207
chopper, band-limiting, 208
reduce background, 208
reject frame overlap, 208
classical steady-beam single-crystal diffractometers, 176
S. W. Peterson and H. A. Levy, 176
coded apertures, 246
array of small apertures, 246
autocorrelation function, 246
masks, 246
mathematical deconvolution, 246
coincidence encoding, 302
several fibers, 302
cold sources, 73
collimator, 182
guides, 182
collimators, 237
pair of apertures, 238
spatial and angular distributions, 237
compound nucleus, 14, 94
resonance, 14
contrast matching, 469
contrast variation, 188
substituting D for H, 188
converging-beam collimation, 244
converge to same point, 245
small-angle diffraction, 244
conversion reactions, 281
fission, 282
fission, heavy fragments, 282
fission, light fragments, 282
light charged particles, 281
coordinate system
C-, 88
center-of-mass, 88
L-, 88
laboratory, 88
R-, 88
relative, 88
coordination number, 453
correlation
length, 101
orientation, of molecules, 118
velocity auto-, 118
correlation choppers, 274
disk choppers, 274
special slit sequence, 274
correlation function
density-density, 117
dynamic, magnetic scattering, 149
pair-, 371
self-, 372
van Hove space-time interparticle density-density, 124
velocity auto-, 136, 376
critically reflecting mirrors, 252
cross section, 14
1-phonon coherent inelastic scattering, 354
1-phonon incoherent scattering, 355
absorption, 93
bound-atom, 15
coherent elastic scattering, 126
differential scattering, 101
double differential macroscopic, 130
double differential scattering, 103
free atom, 15
incoherent scattering, 112
macroscopic differential scattering, 102
macroscopic scattering, 102
magnetic scattering, 148
magnetic scattering of one-magnon processes, 443
magnetic, elastic, 148
mean scattering, 128
microscopic, 14
paramagnetic scattering, 155
scattering, noninteracting dimers, 436
total scattering, 111
crystal monochromators, 276
mosaic crystals, 276
wavelength selected by Bragg reflection, 276
crystal structure determination, 175
higher-order reflections, 176
monochromatic beam, 175
white (broad wavelength band) beam, 175
crystal truncation rods, 339
crystal-analyzer spectrometers, 217
resolution, 218
same as filter detector, 217
current, 21
current density, 21
current density, 89
Darwin term, 144
de Gennes narrowing, 382
Debye equation, 454
Debye-Büchel model, 471
Debye-Scherrer cone, 322
Debye-Waller factor, 132, 362
dedicated neutron reflectometers, 198
pulsed source, 198
steady source, 199
delayed neutrons, 52
density
number, of the tagged particle, 375
detector arrays, 170
modern instruments, 170
detector development, 313
high leverage, 313
urgent need
replace 3He, 313
detector efficiency, 296
accurate series, 297
cylindrical detectors, 297
mean detection time delay, 297
planar detectors, 296
detector of contemporary SANS instruments, 182
detector pulses, 210
time delay, 210
diffuse neutron scattering instrument, 197
Corelli, 197
Index

first dedicated small-angle scattering instruments, 180
D-11, 180
first demonstration of neutron diffraction, 167
Mitchell and Powers, 167
von Halban and Preiswerk, 167
fluctuation-dissipation theorem, 123
flux, 20, 101
Foldy interaction, 144
form factor, 96
centric shells, 474
cylinder, 475
eipsoid, 474
field-induced magnetic, 158
hollow sphere, 474
Homogeneous parallelepiped, 474
magnetic, 147
N concentric spherical shells, 474
sphere, 474
thin disk, 475
thin rod, 475
forms of proportional counters, 290
linear position sensitive, 290
multiwire, 290
simple cylinder, 290
Fourier time, 234
Fourier transform, 2
reciprocal space, 2
Fractal object, 480
frequency moment, 376
gas detectors, 286
Geiger regime, 286
ionization mode, 286
proportional mode, 286
Gaussion approximation, 137
general scattering measurement, 165
detector, 166
incident beam properties, 165
scattered neutron properties, 166
generalized frequency function, 380
generalized magnetic susceptibility, 146
gravitational droop, 184
square of wavelength, 184
Gravity, 16
gavity-correcting prisms and focusing lenses, 188
Greuling-Goertzel equation, 40
Greuling-Goertzel approximation, 41
slowing-down parameters, 39
slowing-down time distribution, 41
Stirling’s formula, 42
Grüneisen mode parameters, 364
guide tube gain, 256
curved guides, 257
finite source, 256
Gunnier equation, 476
Gunnier region, 476

diffusion coefficient, 377
diffusion constant, 135
diffusion equation, 24
Fick’s Law, 24
One-speed diffusion equation, 25
diffusion theory results, 28
spatial distribution, 28
time-dependent, 30
time-independent, 28
dipole-dipole interaction, 144
direct geometry spectrometers, 214
define incident-neutron energy, 214
Direct inversion of reflectivity data, 202
direct-space, 1
disk choppers, 265
for monochromating or pulsing, 265
for time resolution, 265
for wavelength-band limitation, 265
dispersion relationships
neutrons, photons, electrons, 6
dissipative response, 123
double-disk choppers, 266
closely spaced pairs, 266
dynamic susceptibility, 121
dynamical matrix, 349
Einstein frequency, 376
electric dipole moment, 118
electron-volt spectrometers, 220
DINS, 220
epithermal neutrons, 220
free-atom scattering, 221
Electron-Volt spectroscopy, 384
emission time delay, 208
small correction, 209
energy-selective reactions, 284
narrow resonances, 284
prompt gamma rays, 284
table, 285
event recording, 208
Ewald construction, 174
Ewald sphere, 175
exotic schemes, 63
extinction
primary, 323
secondary, 324
Fermi choppers, 267
Archimedes’ spiral, 269
perpendicular-axis, 267
vertical axis, 268
Fermi pseudopotential, 18, 95
Fermi’s golden rule, 104
Fick’s law, 135
3He, 286
BF3, 286
polymerization, 286

515
Index

heavy scatterers, 38
hot sources, 74
I-C function, 81
broadened, 84
full width half-maximum, 85
mean emission time, 85
variance of emission time, 85
image plates, 308
Gd converter, 308
low energy neutrons, 308
other materials, 309
time-integrating detectors, 308
impossible to detect neutrons, 281
no charge, 281
too little energy, 281
impulse approximation, 383

incommensurate sinusoidal modulated structures, 408

inelastic scattering, 166
Placzek corrections, 166
integrating detectors, 307
neutron cameras, 307
not pulsed mode, 307
inverse geometry spectrometers, 214
backscattering type, 214
crystal analyzer type, 214
define scattered-neutron energy, 214
eV type, 214
filter detector, 214
filter detector simplest, 215
isotope substitution, 115, 469
isotropic samples, 181
azimuthally symmetric, 181
samples that can be isotropic, 181

jump diffusion, 384
kinematical approximation, 323
kinematics, 282
energy shared as inverse mass, 283
Kramers-Kronig relations, 122
Kratky camera, 194
cut-and-try modeling methods, 195
mathematical inversion, 195
not amenable to direct methods, 195
point geometry image, 195

Lamb-Mössbauer factor, 133, 362
Langlevin equation, 378
Laue condition, 317
Laue method, 177, 321
image plate, 177
VIVALDI, 177
white beam, 177
lens equation, 259
lenses, 259
converging lenses concave, 259

Levy, 38
logarithmic energy decrement, 39
mean number of collisions, 39
linear absorption coefficient, 115
linear response, 121
local density, 118
Lorentz factor, 321
low-energy particle interactions, 57
(d,n) neutrons, 59
Be(p,n), 59
charged particle neutron yields, 57
Magnetic interactions, 15
magnetic lenses, 260
magnetic sextupole, 261
no losses, 261
magnetic lenses and prisms, 188
magnetization orbital, 146
spin, 146
magnetization density, 118
magnetization density operator, 145, 431
magnon, 441
mass absorption coefficient, 115
master equation, 385
Maxwellian energy distribution, 43
absorption in a 1/v absorber, 44
detailed balance property, 45
Maxwell-Boltzmann distribution, 43
temperature, 43
Maxwellian velocity distribution, 133
mean squared displacement, 137, 376
microchannel neutron detectors, 310
compact, 310
fast response, 310
precise spatial resolution, 310
microstrip gas detectors, 294
gas electron multiplier, 294
gaseous converter, 294
solid converter, 294
Miller indices, 317
mirror filters, 258
deflect unwanted wavelengths, 258
separate polarization states, 258
mirror reflection, 248
critical angle, 248
specular reflection, 249
supermirror, 248
mirror-reflection geometry, 252
moderators, 3, 71, 75
coupled, 77
cryogenic, 3
decoupling material, 76
heterogeneous poisoning, 76, 80
hot source, 3
spatial distribution, 79
steady sources, 71
monitor detectors, 208
energy and intensity, 208
multidetector instruments, 210
angle in two dimensions, 210
multi-k structure, 404, 410
multiple converging aperture collimation, 185
multiple converging aperture collimator, 242
focus, 242
neutron
Chadwick, 10
half-life, 10
hydrogen atom, 10
neutron, 10
magnetic moment, 142
neutron guides, 254
simplest form, 254
time-of-flight shifts, 258
ubiquitous, 254
neutron hand monitors, 309
CCD output, 1-ms readout time, 309
image intensifier, 310
neutron interactions, 12
neutron magnetic dipole-electron dipole interaction, 144
neutron moment-electron charge interaction, 144
Neutron reflectometers, 197
Born approximation, 197
grazing angles, 198
near-surface and interfacial structure, 197
neutron sources, 50
atmospheric neutrons, 56
fission, 50
spallation, 52
spallation neutron spectra, 56
spallation neutron yields, 55
neutron spherical polarimetry, 428
neutron spin-neutron orbit interaction, 144
neutron time schedule, 208
neutron transport equation, 22
Boltzmann equation, 22
transport theory, 22
neutron-nuclear interactions
absorption, 13
capture, 13
elastic scattering, 12
fission, 13
inelastic scattering, 12
spallation, 13
neutrons as particles, 20
phase space density, 20
neutrons as waves, 16
Debye relationship, 17
wave-like and particle-like, 17
neutrons fast and slow, 67
cascade neutrons, 70
cold neutrons, 67
eithermal neutrons, 67
evaporation neutrons, 70
fast neutrons, 67
fission neutrons, 70
hot neutrons, 69
slow neutrons, 67
thermal neutrons, 67
ultra cold neutrons, 68
very cold neutrons, 67
Nobel Prize, 2
Brockhouse, 2
Schull, 2
nonergodicity, 370
normal mode vibrations, 350
NSE energy resolution, 235
maximum Fourier time, 235
off-axis mirrors, 254
optical fibers, 302
wavelength shifts, 302
optical theorem, 93
order
extended-range, 451
intermediate-range, 451
long-range, 315
short-range, 451
orientation matrix, 326
Ornstein-Zernike equation, 479
pair-distribution function, 125
reduced, 455
partial radial distribution function, 454
Partial-waves analysis, 91
Patterson function, 125, 325
PDF method, 465
pepperpot collimators, 243
Percus-Yevick (P-Y) approximation, 479
periodic boundary conditions, 348
phase, 96, 320
phase shift, 91
phase-space, 238
2-dimensional, 238, 241
point is ray, 238
small-angle approximations, 238
phase-space density, 241
same as source, 241
phonon
density of states, 356
dispersion curve, 350
neutron-weighted density of states, 360
photoneutron source, 61
inverse Compton scattering, 63
photoneutron sources
bremstrahlung neutron sources, 61
photosensitive devices, 300
photomultipliers, 300
silicon photomultipliers, 301
pinhole, 245
focusing lens, 245
focusing mirror, 245
pinhole collimation, 184
pinhole imaging, 245
magnification factor, 246
minification factor, 246
Placzek correction, 128
polarizability tensor, 118
polarization analysis
linear, 151
longitudinal, 425
spherical polarimetry, 157
polarization vector, 151, 350
polarized neutron scattering, 177
polarization analysis, 177
polarizers, 232
3He cells, 232
polarized mirrors, 233
polarizing filters, 279
polarizing monochromators, 278
magnetic scattering form factor, 279
polycapillary optics, 254
polydispersity, 477
Porod exponent, 480
Porod Invariance, 472
position encoding, 285, 291
Anger camera, 285
charge division, rise time, 291
discrete detectors, 285
distributed detectors, 285
induced-charge readout, 292
integrating, 285
weighted network, 285
powder diffraction, 169
Debye-Scherrer cone, 169
Lorentz factor, 170
sphere of reflection, 169
dynamic scattering instruments, 170
POWGEN, 170
steady beam, 170
time-of-flight, 170
WOMBAT, 170
powder diffractionometer, 166
power-law exponent, 480
practical eV spectrometers, 221
direct, chopper type, 221
energy-selective detectors, 221
inverse scattering, 221
principle of detailed balance, 120
propagation vector, 403
proportional counters, 287
gas amplification, Townsend avalanche, 287
pulse shapes, 81
emission time distribution, 81
pulsed vs. steady sources, 64
duty cycle factor, 65
pulsed-source instruments, 182
combining the results into one SANS pattern, 182
time-of-flight, 182
white beam, 182
pulse-height discrimination, 289
improve background, 289
reject large pulses, 290
reject small pulses, 289
pulse-height distributions, 288
full-energy peak, 288
nickel plating, 289
quench gas, 289
stopping gas, 289
cold neutrons, 182
wall effect, 288
wall effect plateau, 289
quasi-harmonic approximation, 363
radial collimators, 243
radial distribution function, 453
radial Patterson function, 471
radius of gyration, 476
range of wave vector transfers, 182
cold neutrons, 182
reactors, 2
Fermi’s demonstration, 2
pulsed, 3
real-space, 238
line is ray, 238
reciprocal lattice points, 317
reciprocal space, 231
recoil energies, 284
recoil energy, 135
reduced mass, 88
reference scattering materials, 279
reflection from a planar surface, 199
critical angle, 199
Fresnel’s law, 199
scattering length density, 200
refractometers, 201
general nonmagnetic studies, 201
magnetism studies, 201
nonmagnetic liquid and surface studies, 201
reflectors, 71
repetition rate multiplication, 211
full use of frame, 211
resolution, 2
energy, 2
spatial, 297
time resolution, 298
upper limit, 298
wavelength, 2
radial collimators, 243
radial distribution function, 453
radial Patterson function, 471
radius of gyration, 476
range of wave vector transfers, 182
cold neutrons, 182
reactors, 2
Fermi’s demonstration, 2
pulsed, 3
real-space, 238
line is ray, 238
reciprocal lattice points, 317
reciprocal space, 231
recoil energies, 284
recoil energy, 135
reduced mass, 88
reference scattering materials, 279
reflection from a planar surface, 199
critical angle, 199
Fresnel’s law, 199
scattering length density, 200
refractometers, 201
general nonmagnetic studies, 201
magnetism studies, 201
nonmagnetic liquid and surface studies, 201
reflectors, 71
repetition rate multiplication, 211
full use of frame, 211
resolution, 2
energy, 2
spatial, 297
time resolution, 298
upper limit, 298
wavelength, 2
Index

resonance absorbers, 222
capture gamma-ray method, 222
filter-difference method, 222
to several hundred eV, 222
resonance detectors, 312
Doppler broadened Breit-Wigner form, 312
example 181Ta, 312
prompt capture gamma rays, 312
self-shielding effect, 313
resonance neutron diffraction, 459
resonances, 94
response function, 119
magnetic, 431
Rietveld method, 332
Rietveld profile refinement, 172
GSAS, 173
rocking curve, 277
rotating devices, 262
choppers, 262
do not handle while rotor is spinning, 264
many types, 262
velocity selectors, 262
rotational tunneling, 397
SANS development, 180
Hughes et al., 180
t-o-f technique at the CP-3, 180
SANS machines, 181
pulsed-source, 181
steady-source, 181
scattering, 1
amplitude, 90
angle, 90
capture elastic, 94
center, 87
coherent, 108
compositional incoherent, 114
deep inelastic neutron, 384
diffuse, 461
Inelastic, paramagnetic ions, 162
length, 93
length density, 102
length, coherent, 111
length, incoherent, 112
length, spin-dependent, 111
low-Q, 467
magnetic length, the electron, 145
magnetic, amplitude, 147
master formula, 107
master formula for coherent and incoherent, 109
multiple-, 131
multiple-phonon, 356
neutron Brillouin, 383
neutron Compton, 384
paramagnetic ions, 160
potential, 94
quasielastic neutron, 386
single-, 131
small-angle, 467
spin-dependent, nuclear, 153
spin-incoherent, 110
s-wave, 91
thermal diffuse, 127, 318
total, 127
scattering from light nuclei, 283
atomic recoil detectors, 283
keV neutrons, 283
scattering function, 117
effective, 130
intermediate, 116
magnetic, 148
self-, ideal gas, 134
sum rules, 135
scattering kernel, 23
scattering lengths, 13
coherent and incoherent, 14
positive and negative, 14
zero-spin nuclei, 14
scattering power, 7
neutron coherent scattering lengths, 8
neutrons and x rays, 7
x-ray scattering amplitudes, 8
scintillation detector position encoding, 302
coincidence, 302
crossed-fiber, 302
optical, 302
scintillation detectors, 298
scintillation media, 298
activator, 301
activators, wavelength shifters, 298
Ce LiCAF, 300
converter material, 299
LGB, 299
recipe, 299
scintillating glass (GS-20), 299
table, 300
YAP, 300
ZnSi(Ag) very bright, slow decay, 299
semiconductor detectors, 306
surface coated, 306
volumetrically loaded, 306
shielding, 64
shielding and collimator design
materials and rules, 245
short-wavelength neutron DCDs, 192
angular uncertainty, 192
defines Q_{min} is not constant, 192
single molecular magnets, 437
single-crystal Bragg scattering, 193
Darwin plateau, 193
Krattky camera, 194
multi-bounce crystals, 194
single-crystal diffractometers, 167, 173
Bragg reflections, 167
Laue spots, 167
reciprocal lattice, 173
reciprocal lattice points, 174
single-k structure, 410
slowing-down theory, 31
collision density, 34
hydrogenous material, 34
leakage exponent, 36
resonance escape probability, 35
slowing-down density, 33
time-dependent, 32
Westcott function, 37
small-angle neutron scattering, 179
microscopic inhomogeneities, 179
supramolecular structural, 179
Snell’s Law, 249
complex refractive index, 250
critical angle, 250
critical wavelength, 250
magnetization density, 249
refractive index, 249
scattering length density, 249
Soller collimators, 241
parallel channel array, 241
spallation, 4
special environment powder diffractometer, 171
YCBO structure, 171
spectra, 77
modified Westcott function, 78
slowing-down term, 78
thermal-neutron term, 78
spherical mirrors, 253
spin wave, 441
spin-density Patterson function, 411
spin-echo SANS, 189
decouple intensity-related factors, 189
measures a slit-smeared result as in Kratky cameras, 190
neutron beams of large area, 189
neutron spin-echo, 189
spin-echo spectrometer, 232
Mezei first, 235
spin-precession spectroscopy, 232
spin-turn angle, 232
spin-flip & non-spin-flip, 152
spin-manipulating devices, 279
standard model, 11
nucleons, 11
quarks, 11
static approximation, 127
steady source (reactor), 167
Enrico Fermi, Walter Zinn, and Leona Marshall, 167
Ernest Wollan and Clifford Shull, 167
steady-source instruments, 181
monochromatic beam, 181

stiffness constant, 442
Stoner continuum, 447
structure factor
crystallographic unit-cell, 320
dynamic, 117, 354
elastic, 126
elastic incoherent, 126, 393
interparticle, 478
magnetic, 404
magnetic, commensurate structure, 408
partial, 454
superfluid helium, 206
helium fountain, 206
roton minimum, 206
supermirror, 250
diffraction region, 251
refraction region, 251
surface reflectivity, 200
dynamical theory, 200
Occam’s Razor, 201
phase information, 201
q-space intensity/real-space density relationship, 201
wave-propagation theory, 200
susceptibility
generalized spatial-temporal, 431
generalized wave-vector-frequency, 431
longitudinal magnetic, 445
transverse, 443
TAS focusing, 229
constant-Q-scan, 229
constant-E-scan, 229
dispersion relation, 229
spurions, 230
TAS resolution, 227
focusing important, 227
four-dimensional, 228
time-dependent slowing-down, 37
slowing-down time distribution, 37
time-evolution operator, 119
time-focused crystal-analyzer, 219
extended sample, 219
geometric time-focusing, 219
mosaic crystals, 219
special analyzer cut, 219
time-of-flight implementation of a USANS, 195
Bragg reflection, 195
larger Q_{max}, 196
Q_{max} diminishes as $\exp(-W)A/n$, 195
smaller Q_{max}, 196
time-of-flight instruments, 182
broad band of wavelengths, 182
frame overlap, 183
time-of-flight Laue diffraction, 322
time-of-flight method, 65
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>time-of-flight SANS instruments, 186</td>
</tr>
<tr>
<td>over-determines scattering function, 186</td>
</tr>
<tr>
<td>summing all data, 187</td>
</tr>
<tr>
<td>time-of-flight SANS measurements, 187</td>
</tr>
<tr>
<td>different resolution smearing functions, 187</td>
</tr>
<tr>
<td>time-of-flight single-crystal diffractometers, 178</td>
</tr>
<tr>
<td>Anger-type position-sensitive scintillation detectors, 179</td>
</tr>
<tr>
<td>S. W. Peterson, 178</td>
</tr>
<tr>
<td>TOPAZ, 178</td>
</tr>
<tr>
<td>time-of-flight wavelength uncertainty, 187</td>
</tr>
<tr>
<td>geometric resolution dominates, 187</td>
</tr>
<tr>
<td>small compared to, 187</td>
</tr>
<tr>
<td>T<sub>c</sub> choppers</td>
</tr>
<tr>
<td>block fast neutrons, 272</td>
</tr>
<tr>
<td>T<sub>c</sub> choppers, 271</td>
</tr>
<tr>
<td>action of, 273</td>
</tr>
<tr>
<td>stopping block, 272</td>
</tr>
<tr>
<td>time-dependent background, 273</td>
</tr>
<tr>
<td>total distribution function, 453</td>
</tr>
<tr>
<td>total scattering, 166</td>
</tr>
<tr>
<td>transmission, 115</td>
</tr>
<tr>
<td>transmission function, 271</td>
</tr>
<tr>
<td>transport theory results, 26</td>
</tr>
<tr>
<td>neutron beam attenuation, 26</td>
</tr>
<tr>
<td>time-dependent interaction rate, 27</td>
</tr>
<tr>
<td>triple-axis spectrometers, 225</td>
</tr>
<tr>
<td>Brockhouse Nobel prize, 225</td>
</tr>
<tr>
<td>local Q, E regions, 226</td>
</tr>
<tr>
<td>steady-source instruments, 225</td>
</tr>
<tr>
<td>tanzboden, 226</td>
</tr>
<tr>
<td>three rotation axes, 225</td>
</tr>
<tr>
<td>triple-axis spectrometry, 358</td>
</tr>
<tr>
<td>two-aperture collimators, 238</td>
</tr>
<tr>
<td>penumbra, 238</td>
</tr>
<tr>
<td>umbra, 238</td>
</tr>
<tr>
<td>ultra-small-angle neutron scattering</td>
</tr>
<tr>
<td>Bonse and Hart, 192</td>
</tr>
<tr>
<td>neutron double-crystal diffractometers (DCDs), 192</td>
</tr>
<tr>
<td>thermal diffuse scattering, 192</td>
</tr>
<tr>
<td>very small angular deflections, 192</td>
</tr>
<tr>
<td>van Hove space-time interparticle density-density</td>
</tr>
<tr>
<td>correlation function, 124</td>
</tr>
<tr>
<td>Van Hove’s correlation function, 119</td>
</tr>
<tr>
<td>VCN-based SESANS, 191</td>
</tr>
<tr>
<td>vibrational entropy, 363</td>
</tr>
<tr>
<td>Vineyard approximation, 381</td>
</tr>
<tr>
<td>Warren line shape, 343</td>
</tr>
<tr>
<td>wavefunction, 17</td>
</tr>
<tr>
<td>Schroedinger’s equation, 17</td>
</tr>
<tr>
<td>weighted R-factor, 330</td>
</tr>
<tr>
<td>window function, 134</td>
</tr>
<tr>
<td>Wolter mirrors, 254</td>
</tr>
<tr>
<td>x-rays and neutrons, 196</td>
</tr>
<tr>
<td>complementarity, 196</td>
</tr>
<tr>
<td>y-scaling, 384</td>
</tr>
<tr>
<td>Zimm approximation, 476</td>
</tr>
</tbody>
</table>