ELEMENTS OF SLOW-NEUTRON SCATTERING Basics, Techniques, and Applications

Providing a comprehensive and up-to-date introduction to the theory and applications of slow-neutron scattering, this detailed book equips readers with the fundamental principles of neutron studies, including the background and evolving development of neutron sources, facility design, neutron-scattering instrumentation and techniques, and applications in materials phenomena.

Drawing on the authors' extensive experience in this field, this text explores the implications of slow-neutron research in greater depth and breadth than ever before in an accessible yet rigorous manner suitable for both students and researchers in the fields of physics, biology, and materials engineering. Through pedagogical examples and in-depth discussion, readers will be able to grasp the full scope of the field of neutron scattering, from theoretical background through to practical, scientific applications.

JOHN M. CARPENTER was Professor of Nuclear Engineering at the University of Michigan from 1964–1975. He later became a Senior Physicist at Argonne National Laboratory where he originated and built the first accelerator-based pulsed neutron sources. He is now a Distinguished Scientist Emeritus at Argonne National Laboratory and was awarded the Clifford Shull Prize in Neutron Physics in 2006.

CHUN-KEUNG LOONG was a Senior Physicist at Argonne-IPNS for 25 years. He engaged in the development of neutron time-of-flight spectroscopy and conducted numerous collaborative studies of advanced materials at pulsed and steady-state neutron sources worldwide. He is a seasoned lecturer and organizer of international workshops at many universities and government laboratories in the Americas, Asia, and Europe.

ELEMENTS OF SLOW-NEUTRON SCATTERING

Basics, Techniques, and Applications

J. M. CARPENTER C.-K. LOONG

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521857819

© J. M. Carpenter and C.-K. Loong 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Carpenter, J. M., author. Elements of slow-neutron scattering : basics, techniques, and applications / J. M. Carpenter (Argonne National Laboratory), C.-K. Loong.

pages cm

Includes bibliographical references and index. ISBN 978-0-521-85781-9 (hbk. : alk. paper)

1. Neutrons – Scattering. 2. Slow neutrons. I. Loong, Chun-Keung, 1950– author. II. Title. QC793.5.N4628C37 2015

539.7'58 - dc23 2015009395

ISBN 978-0-521-85781-9 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generation of creatures, what statement would contain the most information in the fewest words? I believe that it is the **atomic hypothesis** (or the atomic **fact**, or whatever you wish to call it) that **all things are made of atoms – little particles that move around in perpetual motion, attracting each other when they are a little distance apart and repelling upon being squeezed into one another.** In that one sentence, you will see, there is an **enormous** amount of information about the world, if just a little imagination and thinking are applied.

Richard P. Feynman *Lectures on Physics*, 1963. (Printed with permission from Pearson Education.)

Cover illustration: The curve is a semilogarithmic plot of the Ewald function describing the reflectivity of a perfect single crystal as a function of the deviation of the glancing angle from the nominal Bragg angle for a given wavelength. Original cover design by J. M. Carpenter.

We dedicate this book to Rhonda DeCardy Carpenter and Rosa Po Po Wong.

Contents

Prej	face		<i>page</i> xiii
Ack	nowled	gments	XV
Sym	nbols ar	nd notations	xvi
	Intro	luction	1
		What is scattering?	1
		An overview of the field of neutron scattering	2
		Matters of general significance	6
1	Abou	t neutrons	10
	1.1	The neutron as an elementary particle	10
	1.2	Neutron interactions	12
	1.3	Neutrons as waves	16
	1.4	Neutrons as particles	20
	1.5	The neutron transport equation	22
	1.6	The diffusion equation	24
	1.7	Transport theory results	26
	1.8	Thermal neutron diffusion theory results	28
	1.9	Slowing-down theory: neutrons slowing down in a medium	31
	1.10	Time-dependent slowing-down	37
	1.11	The Maxwellian thermal-neutron energy distribution	43
	1.12	The angular distribution at the surface of a moderator – the	
		Fermi approximation	46
	1.13	Summary	47
		Further reading	48
2	Neutr	on production, moderation, and characterization of sources	49
	2.1	Primary neutron sources	50
	2.2	Moderators and moderation of fast neutrons	71

viii		Contents	
	2.3	Characterization of sources	77
	2.4	Conclusion	86
		Further reading	86
3	Scatte	ering theory: nuclear	87
	3.1	Scattering of slow neutrons from a single spinless nucleus	87
	3.2	The Fermi pseudopotential	95
	3.3	Scattering by simple objects: form factors	96
	3.4	Scattering cross sections and scattering length density	101
	3.5	Double differential scattering cross section and the Fermi	
	•	golden rule	103
	3.6	Coherent and incoherent scattering	107
	3.7	Scattering functions and correlation functions	116
	3.8	Dynamical susceptibility and linear response theory	118
	3.9	Elastic scattering cross sections, total scattering, and static	124
	3.10	approximation Total scattering and multiple scattering	124 128
	3.10	Examples of correlation functions and the Gaussian	120
	5.11	approximation	131
	3.12	Concluding remarks	131
	0.12	Further reading	138
4	Scatte	ering theory: magnetic	139
	4.1	The magnetic moment of the neutron	139
	4.2	Magnetic scattering of neutrons from electrons	143
	4.3	The scattering function, the dynamic correlation function, and	
		the generalized magnetic susceptibility	148
	4.4	Magnetic scattering from atomic electrons in crystalline solids	149
	4.5	Polarized neutrons	151
	4.6	Neutron spin-dependent nuclear scattering: coherent and	
		spin-incoherent scattering	153
	4.7	Magnetic scattering from identical paramagnetic spins	155
	4.8	Separation of nuclear coherent, spin-incoherent, and magnetic	
	1.0	scattering from a paramagnetic powder	156
	4.9	Polarization analysis of field-induced magnetic form factors	158
	4.10	Examples	160
	4.11	Concluding remarks	164
		Further reading	164
5		on-scattering instruments: diffractometers and reflectometers	165
	5.1	Introduction and early neutron diffraction	165

		Contents	ix
	5.2	Powder diffractometers	169
	5.3	Single-crystal diffractometers	173
	5.4	Small-angle diffractometers	179
	5.5	Neutron reflectometers	197
		Further reading	202
6	Neut	ron-scattering instruments: spectrometers	204
	6.1	Chopper spectrometers	206
	6.2	Inverse geometry spectrometers	214
	6.3	Triple-axis spectrometers	225
	6.4	Spin-echo spectrometers	232
7	Devi	ces	237
	7.1	Collimators	237
	7.2	Mirrors and neutron guides	247
	7.3	Lenses	259
	7.4	Rotating devices	262
	7.5	Crystal monochromators	276
	7.6	Reference scatterers	279
	7.7	Polarizing filters and spin-manipulation devices	279
	7.8	Conclusions	279
8	Dete		281
	8.1	Conversion reactions for slow-neutron detectors	281
	8.2	Gas detectors	286
	8.3	Scintillation detectors	298
	8.4	Semiconductor detectors	306
	8.5	Integrating detectors	307
	8.6	Microchannel neutron detectors	310
	8.7	Resonance capture gamma-ray neutron detectors	312
	8.8	Detector development needs	313
9	Nucl	ear scattering: crystal structures	315
	9.1	Coherent elastic scattering from a perfect crystal: the Laue	
		condition, Bragg's law, and the Ewald sphere	316
	9.2	The crystallographic unit-cell structure factor and the	
		phase problem	319
	9.3	The total elastic coherent scattering cross-section of a single	
		crystal and a powder: the time-of-flight Laue method	320
	9.4	Diffraction methods using monochromatic incident neutrons	322
	9.5	Kinematical approximation and other wavelength- and	
		geometry-dependent factors	323

х		Contents	
	9.6	Implications of crystallographic symmetry	324
	9.7	The Patterson function and Patterson symmetry	325
	9.8	Data collection and crystal structure refinement	326
	9.9	Crystal structure refinement	330
	9.10	An example of structural refinement	333
	9.11	Neutron protein crystallography	336
	9.12	Surface crystallography	339
	9.13	Concluding remarks	344
10	Nuclea	r scattering: lattice dynamics	346
	10.1	Theoretical framework	347
	10.2	Phenomenological models, microscopic theories, and	
		molecular-dynamics simulations	352
	10.3	Group-theoretical analysis of the phonon dispersion	
		relation	353
	10.4	Neutron measurements of phonon dispersion curves and	
		density of states	354
	10.5	Phonon-related physics and thermodynamic properties	361
	10.6	Examples	365
	10.7	Studies of phonons in disordered and amorphous solids	367
	10.8	Concluding remarks	368
		Further reading	369
11	Nuclea	r scattering: chemical spectroscopy	370
	11.1	A simple classical liquid: a qualitative discussion of the	
		neutron scattering functions	371
	11.2	Single-particle motion in a liquid: microscopic dynamics	
		at short time	375
	11.3	Single-particle motion in a liquid: diffusion dynamics	
		at long time	378
	11.4	The generalized frequency distribution function	380
	11.5	Coherent quasielastic scattering and de Gennes narrowing	381
	11.6	Fast sound measurements by neutron Brillouin scattering and	
		momentum distribution by deep inelastic scattering	382
	11.7	Hydrogen motion in crystalline lattices	384
	11.8	Rotational spectroscopy in molecular solids	391
	11.9	The elastic incoherent structure factor	393
	11.10	Inelastic scattering from molecular rotation:	
		librational-torsional oscillations and tunneling	393
	11.11	Concluding remarks	399

		Contents	xi
12	Magne	tic scattering: structures	401
	12.1	Magnetic diffraction using unpolarized neutrons	402
	12.2	The magnetic moment basis vector and propagation vectors	405
	12.3	Single- $\vec{\mathbf{k}}$, multi- $\vec{\mathbf{k}}$, higher harmonics of $\vec{\mathbf{k}}$, and domain	
		structures	410
	12.4	Scattering cross sections of magnetic diffraction from	
		single-crystal and powder samples	410
	12.5	Data collection: some practical considerations	413
	12.6	Solving magnetic structures	414
	12.7	Classification of magnetic structures according to magnetic	
		space groups	422
	12.8	Study of magnetic structures using polarized neutrons	422
	12.9	Beyond spin-ordered structures and concluding remarks	428
13	Magne	tic scattering: excitations	430
	13.1	Excitations from low-lying states of a single ion: the	
		crystal-field effect	432
	13.2	Excitation spectra of spin pairs coupled by the Hiesenberg	
		exchange interaction	434
	13.3	Single molecular magnets	437
	13.4	Spin waves of Heisenberg magnets	441
	13.5	Itinerant electron magnetism	446
	13.6	Concluding remarks	450
		Further reading	450
14	Disord	ered and large structures	451
	14.1	Basic distribution functions obtained from	
		diffraction experiments	452
	14.2	Experimental details and data correction	455
	14.3	Data interpretation and structure models	459
	14.4	Diffuse scattering from local disorder	461
	14.5	The PDF method for analysis of local structures	465
	14.6	Small-angle scattering from structures containing large	
		particles	467
	14.7	SANS from dilute systems	472
	14.8	Characterization of individual particles	473
	14.9	Interparticle interactions: the structure factors	477
	14.10	Experimental setup and SANS data analysis	481
	14.11	Practical examples of structural parameters obtainable from	
		SANS experiments	482
	14.12	Concluding remarks	484

xii	Contents	
Appe	endices	
A.1	Physical constants and numerical relationships	485
A.2	Dirac delta functions	489
A.3	Laplace transforms	493
Refe	rences	497
Keyv	vords	511
Inde	x	513

Preface

With "a little imagination and thinking," scientists have learned to use parts of atoms - neutrons - as probes to glean enormous amounts of information about the world. We have neutrons in the first place inasmuch they are one of the basic constituents of nuclear matter. It also comes about that because neutrons interact strongly but locally with atomic nuclei and because neutrons equilibrated at everyday temperatures have wavelengths comparable to interatomic distances, neutrons are ideally suited as probes of the structure and motions of matter on the atomic length scale. Objects of neutron studies include not only molecules, but also larger assemblies of crystals, polymers, and membranes - fluid and solid, ordered and disordered. Because neutrons have no electric charge, they penetrate deeply into sample materials, providing a true volume average measure of their properties and making it possible to nondestructively define a fiducial volume deep within. And because neutrons carry a magnetic moment, they sense magnetic order and excitations. The wide range of topics that neutron scattering methods address are the business of neutron scattering, which concern substances important to daily living, from engineering materials and earth matter to the stuff of life itself - materials in a very broad sense.

The extent of applications of neutron scattering in science and technology has grown immensely since the beginnings: tentative probing and establishment of principles by the pioneers such as Enrico Fermi, Shyoji Nishikawa, and Lise Meitner in the 1930s; early developments of applications using neutron beams from the first reactors in the 1940s and 1950s; broadening of uses and enlargement of the community of researchers as high-flux research reactors came on the scene in the 1960s and 1970s; and a burgeoning of applications as instruments and techniques evolved for an ever-widening range of specific purposes in the 1980s and 1990s and beyond. Very importantly, starting in the early 1970s, a new basis for neutron scattering research emerged: accelerator-driven pulsed spallation neutron sources. Enabling technologies grew very rapidly – accelerator science, knowledge of

Cambridge University Press & Assessment 978-0-521-85781-9 — Elements of Slow-Neutron Scattering J. M. Carpenter , C.-K. Loong Frontmatter More Information

xiv

Preface

spallation source engineering, development of applications-oriented time-of-flight neutron scattering techniques and instrumentation, and affordable computer power to support the new sources – first in the United States at Argonne National Laboratory in the early 1970s and spreading to the United Kingdom and Japan in the 1980s and 1990s. The new sources opened new horizons for neutron scattering in all traditional branches of science, engineering, and technology addressed by neutron methods; also, the prospects for more powerful versions foreshadow a flourishing of new uses of neutron scattering.

We realize that there are already a number of excellent books on the subject of neutron scattering and that more have been appearing in recent years. In this book we aim to provide an introduction to the subject suited to the needs of advanced undergraduates, graduate students, and their professors; those who, although not aspiring to true expertise in the techniques, require a general understanding of the subject; and also those who intend deeper study, for use as a first text. Furthermore, many of the existing texts predate the use of some of the time-of-flight techniques developed for use in pulsed neutron beams from pulsed spallation neutron sources. As facility designers and neutron researchers, we offer a broad range of information, a "how-to" book, to the ever-broadening community of interested people. We maintain a website, http://www.slowneutronscattering.com, to promote communication with readers and to extend coverage beyond the contents of this book. Cross-references to the web page will be cited as "CL 2015" (Carpenter and Loong 2015), with the individual topic indicated in square brackets – for example, "CL 2015 [large systems]."

About the authors

John M. Carpenter was Professor of Nuclear Engineering at the University of Michigan from 1964 until 1975. He moved to Argonne National Laboratory in 1975 to assume responsibility for development of pulsed spallation neutron sources. There, he and his colleagues built and operated the first-ever pulsed spallation neutron sources equipped for neutron scattering, ZING-P and ZING-P', and later IPNS. He retired in 2007 and now as Emeritus Scientist maintains his office at Argonne.

Chun-Keung Loong joined the Intense Pulsed Neutron Source (IPNS) division of Argonne National Laboratory in 1982, becoming a senior physicist in 1997. He worked on the development of pulsed-source neutron chopper spectrometers and conducted materials research with users at IPNS and collaborators elsewhere. Since retirement in 2007, he remains active in worldwide development of acceleratordriven neutron sources and scattering instrumentation through participation in international workshops, reviews, and lectureships at universities and laboratories in the Americas, Asia, and Europe.

Acknowledgments

When nuclear reactors and particle accelerators were pioneered, no one anticipated the advent of neutron user facilities (likewise the synchrotron X-ray counterparts) equipped with assorted state-of-the-art scattering instruments tailored to materials research. Since then, developments have been continuous and demanding and proceed with intensity. We have had the privilege of many years at Argonne National Laboratory, which has borne witness to critical advances in the field, and have benefited through interactions with IPNS users, including eager students, who planted in our minds the ideas that should be elucidated in a textbook on neutron scattering. We are indebted to our colleagues at Argonne and at sister research institutions for their support of the work in slow-neutron scattering and, during the last several years, for their encouragement and help in the writing of this book. Many of them graciously shared with us figures and other materials that we have included in our book, for which we are grateful. Others have reviewed portions and commented on the contents. Any mistakes readers find are due to the authors.

We thank all the reviewers for their careful, vigilant scrutiny: Ken Anderson, Carla Andreani, Sow-Hsin Chen, Erik Iverson, Alexander Kolesnikov, Kim Lefmann, Michael Loewenhaupt, David Mildner, Steven Nagler, Raymond Osborn, David Price, Roger Pynn, Marie-Louise Saboungi, Eric Schooneveld, Arthur Schultz, Roberto Senesi, Sunil Sinha, and Pappanan Thiyagarajan, among many others. We received essential help from Wes Agresta, Kathryn Carpenter, Scott Cudrnak, Kelly Cunningham, Catherine Eyberger, and Renée Manning. We are much obliged to our ANL librarians for their assiduous, professional assistance. Above all, we are grateful to Rhonda Carpenter – our tireless editor and project manager – for her thorough readings, for her steadfast attention and careful guidance, and for her expert advice on the manuscript, without which this book could never have come to fruition.

Symbols and notations

Following are definitions of symbols unique to this book or needing further explanation than in the text and symbols with multiple uses, mostly excluding conventional terminology.

Vectors: boldface with overbar arrow. Scalars: lowercase, not bold.

Symbols	Meaning	Section or equation number of first appearance
β	$1/k_BT$	1.11
$2\delta\theta_D$	Full width of the Darwin plateau	(5.18)
γ	Greuling–Goertzel parameter	(1.102)
	Reduced neutron mass	(1.12)
$\stackrel{\mu}{\overrightarrow{\mu}}$	Neutron magnetic moment	1.2
μ_N	Time-decay constant for the Nth normal mode	(1.60)
ξ	Mean logarithmic energy loss per collision	1.10
μ_N ξ $\vec{\mathbf{a}}_i$	Reciprocal lattice vector basis vector in the <i>i</i> th direction	5.3
D	Diffusion constant	(1.31)
h, k, l	Miller indices for crystal diffraction	5.3
N_{\uparrow}	Number of particles in a sample having spins in the "↑" direction	(5.11)
P_{\uparrow}	Polarization, i.e., the fraction of particles in a sample having spins in the "↑" direction	(5.11)
r,	Classical electron radius	1.2
r _e R	Surface reflectivity	(5.24)
Т	Interpulse interval in a pulsed source, $T = 1/f_s$	(6.4)
\bar{v}	Neutron speed	(1.53)
F	Fourier transform operator	(3.14)
H	Hamiltonian operator	(3.74)
L	Laplace transform operator	(1.55), (A3.1)