
Introduction

The negative binomial is traditionally derived from a Poisson–gamma mixture
model. However, the negative binomial may also be thought of as a member of
the single parameter exponential family of distributions. This family of distri-
butions admits a characterization known as generalized linear models (GLMs),
which summarizes each member of the family. Most importantly, the char-
acterization is applicable to the negative binomial. Such interpretation allows
statisticians to apply to the negative binomial model the various goodness-of-fit
tests and residual analyses that have been developed for GLMs.

Poisson regression is the standard method used to model count response
data. However, the Poisson distribution assumes the equality of its mean and
variance – a property that is rarely found in real data. Data that have greater
variance than the mean are termed Poisson overdispersed, but are more com-
monly designated as simply overdispersed. Negative binomial regression is a
standard method used to model overdispersed Poisson data.

When the negative binomial is used to model overdispersed Poisson count
data, the distribution can be thought of as an extension to the Poisson model.
Certainly, when the negative binomial is derived as a Poisson–gamma mixture,
thinking of it in this way makes perfect sense. The original derivation of the
negative binomial regression model stems from this manner of understanding
it, and has continued to characterize the model to the present time.

As mentioned above, the negative binomial has recently been thought of as
having an origin other than as a Poisson–gamma mixture. It may be derived as
a generalized linear model, but only if its ancillary or heterogeneity parameter
is entered into the distribution as a constant. The straightforward derivation of
the model from the negative binomial probability distribution function (PDF)
does not, however, equate with the Poisson–gamma mixture-based version of
the negative binomial. Rather, one must convert the canonical link and inverse
canonical link to log form. So doing produces a GLM-based negative binomial
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2 Introduction

that yields identical parameter estimates to those calculated by the mixture-
based model. As a non-canonical linked model, however, the standard errors
will differ slightly from the mixture model, which is typically estimated using
a full maximum likelihood procedure. The latter uses by default the observed
information matrix to produce standard errors. The standard GLM algorithm
uses Fisher scoring to produce standard errors based on the expected informa-
tion matrix – hence the difference in standard errors between the two versions
of negative binomial. The GLM negative binomial algorithm may be amended
though to allow production of standard errors based on observed information.
When this is done, the amended GLM-based negative binomial produces iden-
tical estimates and standard errors to that of the mixture-based negative bino-
mial. This form of negative binimoal was called the log-negative binomial by
Hilbe (1993a), and was the basis of a well-used SAS negative binomial macro
(Hilbe, 1994b). It is also the form of the negative binomial found in Stata’s glm
command as well as in the SAS/STAT GENMOD procedure in SPSS’s GLZ
command, and in GENSTAT’s GLM program.

Regardless of the manner in which the negative binomial is estimated, it is
nevertheless nearly always used to model Poisson overdispersion. The advan-
tage of the GLM approach rests in its ability to utilize the specialized GLM
fit and residual statistics that come with the majority of GLM software. This
gives the analyst the means to quantitatively test different modeling strategies
with tools built into the GLM algorithm. This capability is rarely available
with models estimated using full maximum likelihood or full quasi-likelihood
methods.

In this book we shall discuss in greater depth the two methods of estimating
negative binomial data that have been outlined above. The complete derivation
of both methods will be given, together with discussion of how the algorithms
may be altered to deal with count data that should not be modeled using simple
Poisson or standard negative binomial methods. In fact, we shall devote consid-
erable space to describing the base Poisson regression model, and the manner
in which its assumptions may be violated. In addition, we shall find that just as
Poisson models can be overdispersed, negative binomial models can as well.
Following an examination of estimating methods and overviews of both the
Poisson and negative binomial models, the remainder of the book is devoted to
a discussion of how to understand and deal with various enhancements to both
the Poisson and traditional negative binomial models.

Extensions to the respective Poisson and negative binomials are made
depending on the type of underlying problem that is being addressed. Extended
models include, among others, those for handling excessive response zeros –
zero-inflated Poisson, zero-inflated negative binomial, and hurdle models; for
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Introduction 3

handling responses having no possibility of zero counts – zero-truncated Pois-
son and zero-truncated negative binomial; having responses with structurally
absent values – truncated and censored Poisson and negative binomial; and hav-
ing longitudinal or clustered data – fixed, random, and mixed effects negative
binomial as well as negative binomial GEE. Models may also have to be devised
for situations when the data can be split into two or more distributional sub-
sets. In fact, both Poisson and negative binomial models have been extended to
account for a great many count response modeling situations. We shall attempt
to give an overview of each of the major varieties mentioned here, which should
provide the researcher with a map or guideline of how to handle a wide variety
of count modeling situations.

Typically, extensions to the Poisson model precede analogous extensions to
the negative binomial. For example, statisticians have recently created random
parameter and random intercept count models to deal with certain types of cor-
related data. The first implementations were based on the Poisson distribution.
Nearly all literature dealing with random parameter count models relates to the
Poisson. Negative binomial versions have only surfaced within the past couple
of years, primarily as a result of the work of William Greene. The only soft-
ware available for modeling negative binomial random parameter and intercept
models is LIMDEP, and even at that, it has not yet been made part of its menu
system procedures.

Of the two general count regression models, the negative binomial has greater
generality. In fact, as will be discussed at greater length later in the text, the
Poisson can be considered as a negative binomial with an ancillary or hetero-
geneity parameter value of zero. It seems clear that having an understanding of
the various negative binomial models, basic as well as complex, is essential for
anyone considering serious research dealing with count models.

It is important to realize that the negative binomial has been derived and
presented with different parameterizations. Some authors employ a variance
function that clearly reflects a Poisson–gamma mixture. With the Poisson vari-
ance defined as µ and the gamma as µ2/α, the negative binomial variance is
then characterized as µ + µ2/α. The Poisson–gamma mixture is clear. This
parameterization is the same as that originally derived by Greenwood and Yule
(1920). An inverse relationship between µ and α was also used to define the
negative binomial variance in McCullagh and Nelder (1989), to which some
authors refer when continuing this manner of representation.

However, shortly after the publication of that text, Nelder developed his KK
system (1992), a user-defined negative binomial macro written for use with
Genstat software. In this system he favored the direct relationship between
α and µ2 – resulting in a negative binomial variance function of µ + αµ2.
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4 Introduction

Nelder has continued to prefer the direct relationship in his subsequent writings
(1994). Still, relying on the 1989 work, a few authors have continued to use the
originally defined relationship, even as recently as Faraway (2006).

The direct parameterization of the negative binomial variance function was
favored by Breslow (1984) and Lawless (1987) in their highly influential sem-
inal articles on the negative binomial. In the decade of the nineties, the direct
relationship was used in the major software implementations of the negative
binomial: Hilbe (1993b, 1994a) – XploRe and Stata, Greene (2006) – LIMDEP,
and Johnston (1997) – SAS. The direct parameterization was also specified in
Hilbe (1994a), Long (1997), Cameron and Trivedi (1998), and most articles and
books dealing with the subject. Recently Long and Freese (2003, 2006), Hardin
and Hilbe (2001, 2007), and a number of other recent authors have employed
the direct relationship as the preferred variance function. It is rare now to find
current applications using the older inverse parameterization.

The reason for preferring the direct relationship stems from the use of the
negative binomial in modeling overdispersed Poisson count data. Considered in
this manner, α is directly related to the amount of overdispersion in the data. If
the data are not overdispersed, i.e. the data are Poisson, then α = 0. Increasing
values of α indicate increasing amounts of overdispersion. Values for data seen
in practice typically range from 0 to about 4.

Interestingly, two books have been recently published, Hoffmann (2004)
and Faraway (2006), asserting that the negative binomial is not a true general-
ized linear model. However, the GLM status of the negative binomial depends
on whether it is a member of the single-parameter exponential family of dis-
tributions. If we assume that the overdispersion parameter, α, is known and is
ancillary, resulting in what has been called a LIMQL (limited information max-
imum quasi-likelihood) model (see Greene, 2003), then the negative binomial
is a GLM. On the other hand, if α is considered to be a parameter to be esti-
mated, then the model may be estimated as FIMQL (full information maximum
quasi-likelihood), but it is not a GLM.

In this text, the negative binomial is estimated as both a GLM and as a full
maximum (quasi-)likelihood model. As a GLM, the model has associated fit
and residual statistics, which can be of substantial use during the modeling
process. However, in order to obtain a value of α, i.e. to make α known, it
must be estimated. The traditional, and most reasonable, method of estimating
α is by a non-GLM maximum likelihood algorithm. Extensions to the negative
binomial model, e.g. zero-inflated, zero-truncated, and censored models, are
nearly all based on FIMQL methods. I shall be using both methods of esti-
mation when modeling basic Poisson and negative binomial data. How these
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Introduction 5

methods are used together will become apparent as we progress through the
text.

The first chapter provides a brief overview of count response regression models.
Incorporated in this discussion is an outline of the variety of negative binomial
models that have been constructed from its basic parameterization. Each exten-
sion from the base model is considered as a response to a violation of model
assumptions. We list seven types of violation to the standard negative binomial
model. Enhanced negative binomial models are identified as solutions to the
respective violations.

Chapter 2 examines the two major methods of parameter estimation rele-
vant to modeling Poisson and negative binomial data. We begin by illustrat-
ing the construction of distribution-based statistical models. That is, starting
from a probability distribution, we follow the logic of establishing the esti-
mating equations that serve as the focus of the fitting algorithms. Given that
the Poisson and traditional negative binomial, also referred to as NB-2, are
members of the exponential family of distributions, we define the exponen-
tial family and its constituent terms. In so doing we derive the iteratively re-
weighted least squares (IRLS) algorithm and the form of the algorithm required
to estimate the model parameters. Secondly, we define maximum likelihood
estimation and show how the modified Newton–Raphson algorithm works in
comparison to IRLS. We shall discuss the reason for differences in output
between the two estimation methods, and explain when and why differences
occur.

Chapter 3 is devoted to the derivation of the Poisson log-likelihood and
estimating equations. The Poisson traditionally serves as the basis for deriving
the negative binomial – at least for one variety of negative binomial. Regardless,
Poisson regression is the fundamental method used to model counts. We identify
how overdispersion is indicated from Poisson model output, and some of the
methods used to deal with it. We also discuss the rate parameterization of the
count models. We find that rates can be thought of in a somewhat analogous
manner to the denominators in binomial models. There are important differences
though – which we discuss. The subject relates to the topic of offsets.

Chapter 4 details the difference in real versus apparent overdispersion.
Criteria are specified which can be used to distinguish real from apparent
overdispersion. Simulated examples are constructed that show how apparent
overdispersion can be eliminated. We show how overdispersion affects oth-
erwise equi-dispersed data. Finally, scaling of standard errors, application of
robust variance estimators, jackknifing, and bootstrapping of standard errors are
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6 Introduction

all evaluated in terms of their effect on inference. An additional section related
to negative binomial overdispersion is provided, showing that overdispersion
is a problem for all count models, not simply for Poission models. This chapter
is vital to the development of the negative binomial model.

In Chapter 5 we define the negative binomial probability distribution func-
tion (PDF) and proceed to derive the various statistics required to model the
canonical and traditional form of the distribution. Additionally, we derive the
Poisson–gamma mixture parameterization that is used in maximum likelihood
algorithms. In this chapter it becomes clear that the negative binomial is a full
member of the exponential family of generalized linear models. We discuss
the nature of the canonical form, and the problems that have been claimed to
emanate when applying it to real data. We then re-parameterize the canonical
form of the model to derive the traditional log-linked form (NB-2).

In Chapter 6 we discuss the development and interpretation of the NB-2
model. Examples are provided that demonstrate how the negative binomial is
used to accommodate overdispersed Poisson data. Goodness-of-fit statistics
are examined, in particular methods used to determine whether the negative
binomial fit is statistically different from a Poisson. Residuals appropriate to
evaluation of a negative binomial analysis are derived and explained.

Chapter 7 addresses alternative parameterizations of the negative binomial.
We begin with a discussion of the geometric model, a simplification of the neg-
ative binomial where the overdispersion parameter has a value of one. When the
value of the overdispersion parameter is zero, NB-2 reduces to a Poisson model.
The geometric distribution is the discrete correlate of the negative exponential
distribution. We then address the interpretation of the canonical link derived in
Chapter 5. We thereupon derive and discuss how the linear negative binomial, or
NB-1, is best interpreted. Finally, the NB-2 model is generalized in the sense that
the ancillary or overdispersion parameter itself is parameterized by user-defined
predictors for generalization from scalar to observation-specific interpretation.
NB-2 can also be generalized to parameterize the negative binomial exponent.
This model is called the NB-P model.

Chapter 8 deals with a common problem faced by researchers handling real
data. In many situations the data at hand exclude a zero count. Other data
situations have an excessive number of zeros – far more than defined by usual
count distributions.

Zero-truncated and zero-inflated Poisson (ZIP) and negative binomial
(ZINB) models, as well as hurdle models, have been developed to accommo-
date these two types of data situations. Hurdle models are typically used when
the data have excessive zero counts, much like zero-inflated models. There
are differences, however. Detailed are logit, probit, and complementary loglog
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Introduction 7

negative binomial hurdle models. Finally, we examine negative binomial mod-
els having endogenous stratification.

Chapter 9 discusses truncated and censored data and how they are mod-
eled using appropriately adjusted Poisson and negative binomial models. Two
types of parameterizations are delineated for censored count models: econo-
metric or dataset-based censored and survival, or observation-based censored,
parameterizations.

The final chapter addresses the subject of negative binomial panel models.
These models are used when the data are either clustered or when they are
in the form of longitudinal panels. We derive and examine unconditional and
conditional fixed effects and random effects Poisson and negative binomial
regression models. Population averaged panel models, also referred to as gen-
eralized estimating equations (GEE) are also examined as are random intercept
and random coefficient multilevel negative binomial models.

Several appendices are associated with the text. The titles are listed in the
Contents.
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1

Overview of count response models

Count response models are a subset of discrete response regression models.
Discrete models address non-negative integer responses. Examples of discrete
models include:

RESPONSE

Binary: binary logistic and probit regression
Proportional: grouped logistic, grouped complementary loglog
Ordered: ordinal logistic and ordered probit regression
Multinomial: discrete choice logistic regression
Count: Poisson and negative binomial regression

A count response consists of any discrete response of counts, e.g. the number of
hits recorded by a Geiger counter, patient days in the hospital, and goals scored
at major contests. All count models aim to explain the number of occurrences,
or counts, of an event. The counts themselves are intrinsically heteroskedas-
tic, right skewed, and have a variance that increases with the mean of the
distribution.

1.1 Varieties of count response model

Poisson regression is the basic count model upon which a variety of other count
models are based. The Poisson distribution may be characterized as

fy(y; µ) = e−µµy/y!, y = 0, 1, 2, . . . ; µ > 0 (1.1)

where the random variable y is the count response and parameter µ is the
mean. Often, µ is also called the rate or intensity parameter. Unlike most other
distributions, the Poisson does not have a distinct scale parameter. Rather, the
scale is assumed equal to the location parameter µ.
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1.1 Varieties of count response model 9

The Poisson distribution may also include an exposure variable associated
with µ. The variable, t, is considered to be the length of time or exposure during
which events or counts occur. If t = 1, then the Poisson probability distribution
reduces to the standard form. If t is a constant, or varies between events, then
the distribution can be parameterized as

fy(y; µ) = e−tµ(tµ)y/y! (1.2)

When included in the data, modelers enter the natural log of t as an offset in
the model estimation. Playing an important role in estimating both Poisson and
negative binomial models, offsets are discussed at greater length in Chapter 3.

A unique feature of the Poisson distribution is the relationship of its mean
to the variance – they are equal. This relationship is termed equidispersion.
The fact that it is rarely found in real data has driven the development of more
general count models, which do not assume such a relationship.

The Poisson regression model derives from the Poisson distribution. The
relationship between µ, β, and x, the fitted mean of the model, parameters,
and model covariates or predictors respectively, is parameterized such that
µ = exp(xβ). So doing guarantees that µ is positive for all values of η, the
linear predictor, and for all parameter estimates. By attaching the subscript, ι,
to µ, y, and x, the parameterization can be extended to all observations in the
model. The subscript can also be used when modeling non-iid observations.

As shall be described in greater detail later in this book, the Poisson model
carries with it various assumptions. Violations of Poisson assumptions usually
result in overdispersion, where the variance of the model exceeds the value of
the mean. Violations of equidispersion indicate correlation in the data, which
affect standard errors of the parameter estimates. Model fit is also affected.
Chapter 4 is devoted to this discussion.

A simple example of how distributional assumptions may be violated will
likely be instructional at this point. We begin with the base count model – the
Poisson. The Poisson distribution defines a probability distribution function for
non-negative counts or outcomes. For example, given a Poisson distribution
having a mean of 2, some 39% of the outcomes are predicted to be zero. If, in
fact, we are given an otherwise Poisson distribution having a mean of 2, but
with 50% zeros, it is clear that the Poisson distribution may not adequately
describe the data at hand. When such a situation arises, modifications are made
to the Poisson model to account for discrepancies in the goodness of fit of
the underlying distribution. Models such as zero-inflated Poisson and zero-
truncated Poisson directly address such problems.

The above discussion regarding distributional assumptions applies equally
to the negative binomial. A traditional negative binomial distribution having
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10 Overview of count response models

a mean of 2 and an ancillary parameter of 1.5 yields a probability of approx-
imately 40% for an outcome of zero. When the observed number of zeros
substantially differs from the theoretically imposed number of zeros, the base
negative binomial model can be adjusted in a manner similar to the adjustments
mentioned for the Poisson.

Early on, researchers developed enhancements to the Poisson model, which
involved adjusting the standard errors in such a manner that the presumed
overdispersion would be dampened. Scaling of the standard errors was the first
method developed to deal with overdispersion from within the GLM framework.
It is a particularly easy tactic to take when the Poisson model is estimated as a
generalized linear model. We shall describe scaling in more detail later in the
text. Nonetheless, most count models required more sophisticated adjustments
than simple scaling.

Again, the negative binomial is normally used to model overdispersed Pois-
son data, which spawns our notion of the negative binomial as an extension of
the Poisson. However, distributional problems affect both models, and nega-
tive binomial models themselves may be overdispersed. Both models can be
extended in similar manners to accommodate any extra correlation or disper-
sion in the data that result in a violation of the distributional properties of
each respective distribution (Table 1.1). The enhanced or advanced Poisson or
negative binomial model can be regarded as a solution to a violation of the
distributional assumptions of the primary model.

The following list enumerates the types of extensions that are made to both
Poisson and negative binomial regression. Thereafter, we provide a bit more
detail as to the nature of the assumption being violated and how it is addressed
by each type of extension. Later chapters are devoted to a more detailed exam-
ination of each of these model types.

Earlier in this chapter we described violations of Poisson and negative bino-
mial distributions as related to excessive zero counts. Each distribution has an
expected numbers of counts for each value of the mean parameter; we saw
how for a given mean, an excess – or deficiency – of zero counts result in
overdispersion. However, it must be understood that the negative binomial has
an additional ancillary or heterogeniety parameter, which, in concert with the
value of the mean parameter, defines (in a probabilistic sense) specific expected
values of counts. Substantial discrepancies in the number of counts, i.e. how
many zeros, how many ones, how many twos, and so forth, observed in the
data from the expected frequencies defined by the given mean and ancillary
parameter (NB model), result in correlated data and hence overdispersion. The
first two items in Table 1.1 directly address this problem.
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