Contents

List of illustrations page x
List of tables xii
Preface xiii
List of abbreviations xvi

1 Introduction 1
1.1 Interference modeling and performance evaluation 2
 1.1.1 Mathematical modeling 2
 1.1.2 Experimental modeling 3
 1.1.3 Simulation modeling 3
1.2 Interference avoidance and coexistence strategies 4
 1.2.1 Industry led activities 5
 1.2.2 Fair scheduling and wireless QOS research 5

2 Basic concepts and wireless protocol overview 7
2.1 Physical layer 7
 2.1.1 Communication channel 7
 2.1.2 Modulation and filtering 8
 2.1.3 Channel propagation properties 9
 2.1.4 Signal detection 10
 2.1.5 Spread spectrum 10
2.2 Media access control layer 13
 2.2.1 Channel partitioning 13
 2.2.2 Access control protocol 16
 2.2.3 Key design factors 22
2.3 Examples of wireless protocols 23
 2.3.1 Bluetooth 23
 2.3.2 IEEE 802.11b 27
Contents

3 Interference performance evaluation

3.1 Interference model 31
3.2 Performance metrics 32
 3.2.1 PHY layer performance measures 32
 3.2.2 Higher layer performance measures 34
3.3 Factors affecting performance 35
 3.3.1 Spectrum spreading 37
 3.3.2 Hop rate 37
 3.3.3 Traffic characteristics: offered load and packet size 37
 3.3.4 Transmission power 40
 3.3.5 Number of systems 42

4 Interference modeling: open loop

4.1 Theoretical BER estimation 43
4.2 Modeling BER in wireless channels 47
4.3 Packet error model 49
 4.3.1 Case study: packet error model for Bluetooth with IEEE 802.11b interference 52

5 Interference modeling: closed loop

5.1 Usage definition 54
 5.1.1 Usage models 55
 5.1.2 Simulation scenarios 55
5.2 Application models 55
 5.2.1 Bulk data 56
 5.2.2 Application profiles 57
 5.2.3 Traffic traces 58
5.3 Network topology 60
5.4 Channel model 62
5.5 Protocol layer modeling 63
 5.5.1 MAC layer modeling 63
 5.5.2 PHY layer modeling 65
 5.5.3 Packet and signal processing simulation models interface 66
5.6 Simulation speed-up 67
5.7 Case study: evaluating IEEE 802.11 and Bluetooth interference 68
5.8 Comparing the simulation results with the analysis 71

6 Channel estimation and selection

6.1 Measurements 77
 6.1.1 Physical layer measurements 77
 6.1.2 Higher layer measurements 77
6.2 Adaptive measurements 78
 6.2.1 Time average 79
 6.2.2 Combining measurements 80
 6.2.3 Thresholding techniques 82
6.3 Implementation issues 83
 6.3.1 Channel classification 83
 6.3.2 Channel estimation feedback 84
 6.3.3 Channel estimation frequency 85

7 Effective coexistence strategies 88
 7.1 Knowledge of interference patterns 89
 7.2 Time division multiple access 90
 7.2.1 Fairness 91
 7.2.2 QOS support considerations 92
 7.2.3 Case study: Bluetooth interference aware scheduling (BIAS) 93
 7.2.4 Service priority 95
 7.3 Frequency division multiple access 103
 7.3.1 Space partitioning 104
 7.3.2 Time partitioning 105
 7.3.3 Case study: adaptive frequency hopping for Bluetooth systems 106
 7.4 Handovers 114
 7.4.1 Handover types 115
 7.4.2 Handover architecture 116

8 Myths and common pitfalls 117
 8.1 Power control 118
 8.1.1 Implementing PC in Bluetooth 120
 8.1.2 Lessons learned 124
 8.2 Modulation control 125
 8.2.1 Modulation control strategy in WLAN 126
 8.2.2 Lessons learned 131
 8.3 Parameter optimization 132
 8.3.1 Effects of packet fragmentation 132
 8.3.2 Effects of forward error correction 135
 8.3.3 Lessons learned 137

References 138

Index 143