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Introduction

The topic of this book is the geometry of folding and unfolding, with a specific emphasis
on algorithmic or computational aspects. We have partitioned the material into three
parts, depending on what is being folded or unfolded: linkages (Part I, p. 7-164), paper
(Part II, p. 165-296), and polyhedra (Part III, p. 297-441). Very crudely, one can view
these parts as focusing on one-dimensional (1D) objects (linkages), 2D objects (paper),
or 3D objects (polyhedra). The 1D-2D-3D view is neither strictly accurate nor strictly
followed in the book, but it serves to place related material nearby.

One might classify according to the process. Folding starts with some unorganized
generic state and ends with a more structured terminal “folded state.” Unfolding is the
reverse process, but the distinction is not always so clear. Certainly we unfold polyhedra
and we fold paper to create origami, but often it is more useful to view both processes
as instances of “reconfiguration” between two states.

Another possible classification concentrates on the problems rather than the objects
or the processes. A rough distinction may be drawn between design problems—given
a specific folded state, design a way to fold to that state, and foldability questions—can
this type of object fold to some general class of folded states. Although this classification
is often a Procrustean bed, we follow it below to preview specific problem instances,
providing two back-to-back minitours through the book’s 1D-2D-3D organization. We
make no attempt here to give precise definitions or state all the results. Our goal is to
select nuggets characteristic of the material to be presented later in detail. The first
pass through (design problems) emphasizes geometry, the second pass (foldability
questions) emphasizes computational complexity.

m DESIGN PROBLEMS

0.1.1 I: Kempe Universality

A planar linkage is a collection of fixed-length, one-dimensional segments lying in a
plane, joined at their endpoints to form a connected graph. The joints permit full 360°
rotation, and the rigid segments are permitted to pass through one another freely. With
one or more joints pinned to the plane, the motion of any particular free joint J is
constrained by the structure of the linkage. A specific question here is this:

Let S be an arbitrary algebraic curve in the plane. Is there some linkage so
that the motion of some free joint J traces out precisely S?
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n Chapter 0. Introduction

Figure 0.1. There is a linkage that traces a thin
version of this collection of curves.

The surprising answer is YES, even if the “curve” includes cusps and multiple pieces.
Thus, there is linkage that “signs your name” (Figure 0.1).

The original idea for the construction of a linkage to trace a given curve is due to
Kempe from 1876, but technical difficulties in the proof were not completely resolved
until 2002. We discuss the history, sketch Kempe’s beautiful but flawed proof, and the
recent repairs in Section 3.2. An interesting open question here (Open Problem 3.2)
is whether there is a linkage to follow any algebraic curve that does not self-intersect
during the motion.

0.1.2 II: Origami Design

The epitome of a folding design question is provided by origami:

Given a 3D shape (an origami final folded state), find a crease pattern and
sequence of folds to create the origami (if possible) from a given square piece
of paper.

Stated in this generality, this problem remains unsolved, which is one reason that
origami is an art. However, in practice origami shapes are a subset of all possible 3D
shapes. They are those shapes constructible in two steps: creating an origami base, and
creasing and adjusting the remaining paper to achieve the desired design. An origami
base can be considered a metric tree: a tree with lengths assigned to the edges. Creating
the base is the hard part of origami design; the secondary adjusting steps are relatively
easy (for origami masters).

In the past decade, Robert Lang has developed an algorithm to construct a crease
pattern to achieve any given “uniaxial base,” the most useful type of origami base. This
represents a huge advance in origami design, which previously relied on just a handful
ofknown origami bases. It has allowed Lang to design amazingly intricate origami, such
as the mule deer shown in Figure 0.2.

We describe his algorithm, implemented in a program he calls TreeMaker, in Chap-
ter 16. One issue remaining here is that although there is strong experimental evidence
that the crease pattern output by TreeMaker leads to a non-self-intersecting folded
state, this has yet to be formally proved.

0.1.3 III: Unfolding to Net

The oldest problem we discuss in this book goes back (in some sense) to Albrecht Diirer
in the sixteenth century, who drew many convex polyhedra cut open along edges and
unfolded flat to a single nonoverlapping piece, now called a net. See Figure 0.3 for an
example from his Painter’s Manual (1525).

It remains unresolved today (Open Problem 21.1) whether this is always possible:

Can the surface of every convex polyhedron be cut along edges and unfolded
to a net?
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0.2. Foldability Questions

o TTRAL

Figure 0.2. A “mule deer” folded by Robert Lang (opus 421): http://www.langorigami.com/art/
gallery/gallery.php4?name=mule_deer The crease pattern was designed using TreeMaker.
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Figure 0.3. A net for the snub cube, drawn by Diirer.

Here the design target is not a specific shape, but rather any planar shape that avoids
overlap. We discuss in Chapter 22 evidence for and against the conjecture that the
answer to this question is YES, and spin off in a number of related directions. One such
question is obtained by removing the edge-unfolding restriction: that the cuts must be
along edges of the polyhedron. For unrestricted cuts, the answer to the posed question
is known to be YEs (Section 24.3).

m FOLDABILITY QUESTIONS

We now make our second pass through the three parts of the book, this time concen-
trating on foldability.
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“ Chapter 0. Introduction

0.2.1 I: Ruler Folding

Apolygonal chain is alinkage whose graph is just a path. If one views it as a “carpenter’s
ruler,” it is natural to seek to fold it up into as compact a package as possible. This is
known as the “ruler folding problem”:

Given a polygonal chain with specific given (integer) lengths for its 7 links,
and an integer L, can it be folded flat (each joint angle either 0 or 180°) so that
its total length is < L?

Of course, sometimes the answer is YES and sometimes No, depending on the link
lengths and L. What is interesting here is the “computational complexity” of deciding
which is the case. It was proved in 1985 that answering this question is difficult: NP-
complete in the technical jargon. Effectively this means that for, say, n =100, it is not
feasible to decide. We present the (easy) proof in Section 2.2.2, one of several proofs
throughout the book that establish similar NP-completeness results.

0.2.2 II: Map Folding

A flat folding of a piece of paper is a folding by creases into a multilayered but planar
shape. The paper is permitted to touch but not penetrate itself. A fundamental question
on flat folding is this:

Given a (rectangular) piece of paper marked with creases, with each subseg-
ment marked as either a mountain or valley crease, does it have a flat folded
state?

It was proved in 1996 that answering this question is NP-hard, which means at least
asintractable as an NP-complete problem. We present a (complex) proofin Section 13.2
forthe easier case when the mountain—valley assighments are not given. When they are
specified, the proof is even more difficult. An interesting variant remains open (Open
Problem 14.1):

Given a (rectangular) piece of paper marked by a regular square grid of unit-
separated creases, with each subsegment marked as either a mountain or a
valley crease, can it be folded into a single 1 x 1 square?
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Figure 0.4. (a) A 3 x 3 map that can be folded (but not easily!) (cf. Figure 14.1); (b) a 2 x 5 map
that cannot be folded (Justin 1994).
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0.2. Foldability Questions [ 5 |

Figure 0.5. A polygon that folds to a convex
polyhedron of 16 triangular faces.

See Figure 0.4 for examples. The added constraints on the creases in the map-folding
problem may make this tractable even though the unconstrained problem is not.

0.2.3 III: Polygon Folding

The inverse of unfolding a convex polyhedron to a net is folding a polygon to a convex
polyhedron:

Given a polygon of n vertices, can it fold to some convex polyhedron?

Here we assume that the folded polygon covers the surface of the polyhedron precisely
once: there are neither gaps in coverage nor double coverage. Nor are we insisting that
the polygon be an edge unfolding of the polyhedron; rather, the cuts that produce it are
arbitrary.

Figure 0.5 shows an example that can fold. Not all polygons can—there are “un-
foldable polygons”—so the question makes sense. It was first settled for a special case,
when the folding is restricted to glue whole edges of the polygon to one another. Then
an O(n®)-time algorithm is known for a polygon with n vertices. Without the edge-to-
edge restriction, only an exponential-time algorithm is available. Both algorithms are
discussed in Section 25.1. It remains open (Open Problem 25.3) whether the question
can be decided in polynomial time.

These quick tours give some sense of the material, but there is no substitute for
plunging into the details, which we now proceed to do.
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Linkages
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Problem Classification and Examples

Our focus in this first partis on one-dimensional (1D) linkages, and mostly on especially
simple linkages we call “chains.” Linkages are useful models for robot arms and for
folding proteins; these and other applications will be detailed in Section 1.2. After
defining linkages and setting some terminology, we quickly review the contents of this
first part.

Linkage definitions. A [inkage is a collection of fixed-length 1D segments joined at
theirendpoints to form a graph. Asegment endpointis also called a vertex. The segments
are often called links or bars, and the shared endpoints are called joints or vertices.'
The bars correspond to graph edges and the joints to graph nodes. Some joints may be
pinned to be fixed to specific locations. Although telescoping links and sliding joints
are of considerable interest in mechanics, we only explore fixed-length links and joints
fixed at endpoints. (We'll use the term mechanism to loosely indicate any collection of
rigid bodies connected by joints, hinges, sliders, etc.) An example of a linkage is shown
in Figure 1.1.

Overview. After classifying problemsin this chapter, we turn to presenting some of the
basic upper and lower complexity bounds obtained in the past 20 years in Chapter 2. We
then explore in Chapter 3 classical mechanisms, particularly the pursuit of straight-line
linkage motion. In contrast to these linkages, whose whole purpose is motion, we next
study in Chapter 4 when a linkage is rigid, that is, can move at all. Most of the remainder
of Part I concentrates on chains, starting with reconfiguring chains under various con-
straints in Chapter 5. We then reach in Chapter 6 what has been the driving concern in
the community for at least a decade: deciding under what condition a chain is locked.
In the language of configuration spaces (to be introduced shortly), rigidity corresponds
to an isolated point in configuration space and lockedness to a disconnected compo-
nent in configuration space. This leads naturally to interlocked collections of chains in
Chapter 7. We close with a study of fixed-angle chains in Chapter 8, which leads directly
to protein folding in Chapter 9.
We now turn to classifying the problems pursued in later chapters.

1 Sometimes it is convenient to place an endpoint joint of one link in the interior of another rigid
link. This structure can always be simulated by links that only share endpoint joints by adding extra
links to ensure rigidity, as we will show later (Figure 3.10). So we sometimes will use interior joints
in figures, but in our analysis assume all joints are mutual endpoints.

© Cambridge University Press

www.cambridge.org



http://www.cambridge.org/0521857570
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-85757-4 - Geometric Folding Algorithms: Linkages, Origami, Polyhedra
Erik D. Demaine and Joseph O’Rourke

Excerpt

More information

“ Chapter 1. Problem Classification and Examples

Figure 1.1. A linkage. The circles represent joints at which turning is possible; the two leftmost
joints are pinned to the plane. The shaded “lamp” structure is rigid (because of the interior diag-
onals).

m CLASSIFICATION

There are six features or “parameters” which together classify most of the material we
discuss in Part I. These features fall into two groups: those classifying the linkages and
those classifying the problems studied. We now quickly survey this classification, with
many details deferred to later sections.

First, linkages can be distinguished according to their graph structure, the dimen-
sion, and intersection conditions. The graph structure may be a general graph (e.g.,
Figure 1.1), a tree, a single cycle, or a simple path. A linkage whose graph is a cycle is
called a polygon; one whose graph is a path we will call a polygonal chain or just a chain.
In the literature a chain is also called an arc, a robot arm, or an arm.

The second parameter is the dimension of the ambient space in which the linkage
lives: two, three, four, or higher dimensions. We abbreviate these as 2D, 3D, 4D, and kD,
and often use planar to mean 2D.

The third parameter classifies how the linkage may intersect itself or intersect ob-
stacles in its environment. With no constraints and no obstacles, the linkage may freely
pass through itself, with all joints permitting arbitrary rotation. For 2D chains, this
model can be realized with the links at slightly different levels parallel to a plane, with
joints realized as short pegs perpendicular to that plane. An intermediate situation of
some interest is a linkage that can freely pass through itself, but which is forbidden
to penetrate certain fixed obstacles in its environment. This is especially useful for
modeling workspace restrictions for robot arms. Finally, much work has assumed an
obstacle-free environment but insists that the linkage never self-intersect. A linkage
which does not self-intersect is (confusingly) said to be simple in the literature, so of-
ten this restriction is phrased as demanding the simplicity of the linkage. For example,
a polygon that does not self-intersect is a simple polygon. There is a somewhat sub-
tle distinction between self-intersection and self-crossing, which we will revisit later
(in Section 6.8.2).

The foregoing three parameters classify the linkages. We now turn to classifying
the questions asked. There are again three primary features that distinguish the ques-
tions: the geometric issue, the answer desired, and the type of complexity bound
sought.

The most specific geometric problem is “reconfiguration.” A configuration of a link-
age is a specification of the location of all the link endpoints (and therefore of the
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1.2. Applications

link orientations and joint angles).? A configuration respects the lengths and non-self-
intersection of the linkage (if so specified), but may penetrate obstacles. A configuration
which avoids all obstacles is said to be free, and one that touches but does not penetrate
obstacles is semifree.

For example, a configuration of an n-vertex polygon in 3D may be specified by
3n numbers: n triples of vertex coordinates. The configuration space is the space of all
configurations of alinkage.? In the polygon example, this space is a subset of 3n-dimen-
sional space, R®". The reconfiguration problem asks, given an initial configuration A
and a final configuration 5, can the linkage be continuously reconfigured from A to B,
keepingall links rigid (their original length), staying within the ambient space (e.g.,a2D
plane), withoutviolatinganyimposed intersection conditions? (When alinkage satisfies
all the conditions it is said to be in a legal configuration.) A slightly less specific problem
is to determine reachability: whether a particular point (usually a link endpoint) of a
linkage can reach, that is, coincide with, a given point of the ambient space. Here the
configuration that achieves the reachingis considered irrelevant. This is typical of robot
arm applications, where, for example, a soldering robot arm must reach the soldering
point, but whether the elbow is raised or lowered when it does is of less concern. The
final and least specific problem we consider concerns what we will call locking: Are
every two legal configurations of a linkage connected in the configuration space, or
mightalinkage be locked or “stuck” in one component of the space and thereby isolated
from configurations in another component? There are several variations on this theme
for different linkage structures, which will be detailed later (in Chapter 6).

The second problem parameter is the answer desired. Decision problems seek YES/NO
answers: for example, can the arm reach this point? Path planning problems request
more when the answer is YEs: an explicit path through the configuration space that
achieves the reconfiguration.

Finally, a third problem parameter is the complexity measure employed. For path
planning problems, the combinatorial complexity of the path may be of interest, for
example, the number of constant-degree piecewise-algebraic arcs composing the path.
But in general, the algorithmic computational complexity is the primary measure: for
example, O(nP), Q2(n7), NP-complete, NP-hard, PSPACE-complete, PSPACE-hard, and
so on.*

These parameters collectively map out a rich terrain to explore, as indicated in
Table 1.1. Before embarking on this study, we quickly survey some of the applications
that inspired the models.

m APPLICATIONS

1.2.1 Robotics

It is sometime useful to view an articulated robotic manipulator as a chain of links. For
example, the robot arm shown in Figure 1.2, developed by Forward Thompson Ltd, is
a six-axis (6 degrees of freedom) articulated linkage that is designed to apply adhesive

2 In the literature, a configuration is sometimes called a placement, confirmation, or realization. We

use the term “realization” for a different notion in Chapter 4.
This is also called the moduli space of the linkage.
Refer ahead to page 22 for a brief tutorial on complexity classes.
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“ Chapter 1. Problem Classification and Examples

Table 1.1: Classification parameters for 1D linkage problems
Focus Parameter Values

Linkage Graph structure General, tree, polygon, chain
Intersection constraints None, obstacles, simple
Dimension 2D, 3D, 4D, kD

Problem Geometric issue Reconfiguration, reachability, locked
Answer desired Decision, path planning
Complexity measure Combinatorial, computational bounds

Figure 1.2. A six-axis robot arm. [By permission, For-
ward Thompson Ltd.]

tape to the edges of plate glass units for protection. The settings of the four joints deter-
mine the exact position of this robot arm, and so its configuration may be specified by
a point in a 4D configuration space. Construction of this configuration space for a spe-
cific robot arm and analysis of its geometric and combinatorial structure have proven
to be a fruitful methodology (e.g., for “workspace clearance”) since its introduction by
Lozano-Pérez and others in the 1980s (e.g., Lozano-Pérez 1987; Lumelsky 1987).> We
will make essential use of configuration spaces in Sections 2.1.1 and 5.1.1.2, and in fact
throughout this book.

The complexity of the configuration-space approach for robots with a large number
of degrees of freedom has led to probabilistic methods (e.g., Barraquand and Latombe
1990), an area which, a decade later, is dovetailing with protein folding, as we will see
below.

Another concern of robot designers is inverse kinematics: given a desired tool posi-
tion, compute joint angles which achieve that position. We will touch upon this topic
(“reachability”) in Section 5.1.1.2. There is currently great interest in the graphics com-
munity in inverse kinematics for animating articulated human models (e.g., Zhao and
Badler 1994).

1.2.2 Mechanisms

The study of linkages, and more generally, mechanisms, has long been important to
engineering. Often the kinematics of mechanisms is of central concern in practical
applications (e.g., Hunt 1978), but for our purposes only the geometry of linkages will
playarole. Apantographisatypical usefullinkage. Its essenceis a parallelogram linkage,
one of whose joints has its movement duplicated by an attached bar (see Figure 1.3;
here the scale factor is 2). The pantograph has been used for centuries to copy and/or

5 The roots of this idea go back to Lozano-Pérez and Wesley (1979).
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