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Preface

I first became enamoured of the Fels and Olver formulation of the moving

frames theory when it helped me solve a problem I had been thinking about for

several years. I set about reading their two 50-page papers, and made a 20-page

handwritten glossary of definitions. I was lucky in that I was able to ask Peter

Olver many questions and am eternally grateful for the answers.

I set about solving the problems that interested me, and realised there were

so many of them that I could write a book. I also wanted to share my amazement

at just how powerful the methods were, and at the essential simplicity of the

central idea. What I have tried to achieve in this book is a discussion rich in

examples, exercises and explanations that is largely accessible to a graduate

student, although access to a professional mathematician will be required for

some parts. I was extremely fortunate to have six students read through various

drafts from the very beginning. The comments and hints they needed have been

incorporated, and I have not hesitated to put in a discussion, example, exercise

or hint that might be superfluous to a professional.

There is a fair amount of original material in this book. Even though some

of the problems addressed here have been solved using moving frames already,

I have re-proved some results to keep both solution methods and proofs within

the domain of the mathematics developed here. I love coming up with simpler

solutions. In particular, the variational methods developed in Chapter 7 are

my own. The theorem on moving frames and Noether’s Theorem, which was

discovered and proved with Tania Gonçalves, particularly pleases me. The

application of moving frames to the solution of invariant ordinary differential

equations is also new. I was particularly chuffed to solve the Chazy equation

using relatively simple calculations, see Chapter 6. Theorem 5.2.4 allowing

one to write down the curvature matrices in terms of a matrix representation

of the frame was published earlier in Mansfield and van der Kamp (2006), and

ix
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x Preface

there are some fun exercises giving new applications. Finally some minor (and

not so minor) errors in the original papers have been corrected.

The natural setting of the problems that interested me did not fit well with

the language of differential geometry in which all discussions of moving frames

were couched, so I set about casting the calculations into ordinary undergrad-

uate calculus in order to explain it in my papers and then to teach it to my

students. It was clear that a major benefit of Fels and Olver’s formulation of the

central concept was that it actually freed the moving frame method from the

confines of differential geometry; that it could apply equally well to differential

difference problems, to discrete problems, to all kinds of numerical approxi-

mations and so on. In any event, there are serious problems with that language

as an expository tool.† Thus when I decided to write up my notes into a book,

I was clear in my own mind that I was not going to use the exterior calculus as

the primary expository language. Nevertheless, it is important to have available

coordinate-free expressions if we are not to suffer ‘death by indices’. What I

wanted was a language that offered concrete models of objects like smooth

functions, vectors and vector fields, capable of use in both finite and infinite

dimensional spaces, that was linked in an open, explicit and well-defined way

to multivariable calculus, and for which there was a good literature where the

central significant theorems were proved properly. The language I needed, and

use, is that of Differential Topology. I learned this subject twice, first at the

University of Sydney in lectures given by M. J. Field, and then at the Univer-

sity of Wisconsin, Madison, in a year long course given by Dennis Stowe. I am

extremely grateful to them both. The notation and language that I use in this

book is what they both independently taught me, which has stood me in good

stead my whole career.

A huge contribution to the theory of moving frames, as they can be studied

rigorously in a symbolic computation environment, has been made by Evelyne

Hubert. One of the main benefits of the Fels and Olver formulation of moving

frames is that much of the calculation can be done symbolically in a computer

algebra environment. The fact that one can have a symbolic calculus of invari-

ants, without actually solving for the frame, is what turns this theory from the

merely beautiful to the both beautiful and useful; this is the hallmark of the

best mathematics. From the point of view of rigorous symbolic computation,

though, there were problems, in particular with the need to invoke the implicit

function theorem because this is a non-constructive step. Evelyne Hubert and

Irina Kogan (Hubert and Kogan, 2007a) provide algebraic foundations to the

moving frame method for the construction of local invariants and present a

† Don’t get me started.
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Preface xi

parallel algebraic construction that produces algebraic invariants together with

the relations they satisfy. They then show that the algebraic setting offers a

computational solution to the original differential geometric construction.

A second problem solved by Evelyne Hubert was the lack of a theory to

analyse the differential systems resulting from invariantisation, since these

involve non-commuting differential operators. Indeed, none of the edifice of

mathematics that had been produced to study over determined differential

systems rigorously was applicable, although an equivalent theory was needed

for the applications (Mansfield, 2001). In a beautiful exposition (Hubert, 2005),

the web of difficulties was pulled apart, the necessary concepts and results were

lined up in order, and the required theory was developed.

A third problem solved by Hubert was that of proving that a certain small,

finite set of syzygies, or differential relations satisfied by the invariants, gen-

erated the complete set of syzygies (Hubert, 2009a). This was important since

the theorem written down by Fels and Olver turned out to be false in general.

Finally, Hubert finds a set of generators of the algebra of differential invari-

ants that are not only simple to calculate but simple to conceptualise (Hubert,

2009b).

To give an exposition of these papers at the level I wrote this volume

would require another volume, with a substantial expository section on over

determined systems. However, the papers are accessible and I commend them

to the reader.

When I started to view the material from the point of view of my target

audience, primarily people wanting to use the methods but not having learnt

(nor wanting to learn) Differential Geometry, and also graduate students, I

came to realise that the subject involves a significant range of mathematics that

could not realistically be assumed knowledge. Brief but necessary remarks on

topics from transversality to foliations to jet bundles, and on calculations in

Lie algebras and the variational calculus, all swelled to much longer expository

sections than I anticipated. One central classical theorem for which I could not

find a decent modern exposition of the proof was Frobenius’ Theorem, so I

have outlined the proof in a series of exercises. The outline is based on that

given in lectures at the University of Wisconsin, Madison, by Dennis Stowe, to

whom I acknowledge my debt.

In writing this book I have tried to steer a course through the material that

is both honest and pragmatic. If being rigorous would have involved too long

a detour, I chose computation of examples and discussion over rigour; it is

more insightful to discuss the meaning rather than the proof of a result when

there is a good text that can be consulted for further reading. Where I do give a

proof, though, I aimed for the proof to follow rigorously from the established
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xii Preface

base of knowledge. Interestingly, sometimes not even the cleanest, simplest

proofs reveal the inner truth: the full understanding of theorems can only be

achieved after a range of examples can be computed. I give many exercises,

hints, and details in my own calculations to help my readers to two levels of

computational expertise: first, to be able to correctly work simple examples

that can be done by hand or performed interactively with a computer algebra

package, and second, to be able to write a computer program to do his or her

own larger examples.

I wish to thank Peter Olver, Evelyne Hubert, Peter Hydon and Francis Vali-

quette, who sent me comments. I had some great discussions with Gloria Marı́

Beffa, resulting in several beautiful examples that are described in the text.

Peter van der Kamp’s insistence on in-depth detail for his own understanding

of moving frames made this a much better book. Tania Gonçalves, Richard

Hoddinott, Jun Zhao and Andrew Wheeler worked through the exercises; read-

ers can thank them for the hints and for amplified discussions in various places.

I road tested the very first set of notes on Emma Berry and Andrew Martin

whose comments helped me see things from my target audience’s point of

view.

As ever, I wish to thank my dear husband Peter Clarkson who supported

me in a million different ways when the going got tough. I have faced and

overcome some extraordinary obstacles in order to have a mathematical career;

I have my father Dr Colin Mansfield, my PhD thesis supervisor Dr Edward

Fackerell (Sydney), and my mentor Professor Arieh Iserles (Cambridge) to

thank for their extraordinary timely support. Words cannot express how lucky

and how grateful I feel to have such stalwart friends and fellow travellers.

The author would like to acknowledge the Engineering and Physical

Sciences Research Council (UK) grant, ‘Symmetric variational problems’

EP/E001823/1.
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