FUNDAMENTALS OF GEOPHYSICAL FLUID DYNAMICS

Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. On the planetary scale they combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion.

This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations.

JIM MCWILLIAMS is the Louis B. Slichter Professor of Earth Sciences in the Department of Atmospheric and Oceanic Sciences, Institute of Geophysics and Planetary Physics, University of California at Los Angeles. He is also a Senior Research Scientist at the National Center for Atmospheric Research, Boulder. He has undertaken research in the theory and computational modeling of Earth's ocean and atmosphere for the last 30 years. Professor McWilliams has taught a course on the fundamentals of geophysical fluid dynamics at UCLA for several decades. He is a Fellow of the American Geophysical Union, and a member of the National Academy of Sciences.

FUNDAMENTALS OF GEOPHYSICAL FLUID DYNAMICS

JAMES C. MCWILLIAMS

Department of Atmospheric and Oceanic Sciences University of California, Los Angeles

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521856379

© J. C. McWilliams 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2006

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN-13 978-0-521-85637-9 hardback ISBN-10 0-521-85637-X hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface page ix				
Sy	mbols	5		xi
1	Pur	poses a	and value of geophysical fluid dynamics	1
2	Fun	damen	tal dynamics	8
	2.1	Fluid	dynamics	8
		2.1.1	Representations	8
		2.1.2	Governing equations	9
		2.1.3	Boundary and initial conditions	13
		2.1.4	Energy conservation	14
		2.1.5	Divergence, vorticity, and strain rate	16
	2.2	Ocean	nic approximations	18
		2.2.1	Mass and density	19
		2.2.2	Momentum	22
		2.2.3	Boundary conditions	24
	2.3	Atmos	spheric approximations	27
		2.3.1	Equation of state for an ideal gas	27
		2.3.2	A stratified resting state	29
		2.3.3	Buoyancy oscillations and convection	31
		2.3.4	Hydrostatic balance	34
		2.3.5	Pressure coordinates	35
	2.4	Earth'	's rotation	39
		2.4.1	Rotating coordinates	41
		2.4.2	Geostrophic balance	43
		2.4.3	Inertial oscillations	47

vi		Contents	
3	Bar	otropic and vortex dynamics	49
	3.1	Barotropic equations	50
		3.1.1 Circulation	51
		3.1.2 Vorticity and potential vorticity	54
		3.1.3 Divergence and diagnostic force balance	57
		3.1.4 Stationary, inviscid flows	59
	3.2	Vortex movement	64
		3.2.1 Point vortices	64
		3.2.2 Chaos and limits of predictability	72
	3.3	Barotropic and centrifugal instability	73
		3.3.1 Rayleigh's criterion for vortex stability	73
		3.3.2 Centrifugal instability	75
		3.3.3 Barotropic instability of parallel flows	76
	3.4	Eddy-mean interaction	80
	3.5	Eddy viscosity and diffusion	83
	3.6	Emergence of coherent vortices	86
	3.7	Two-dimensional turbulence	88
4	Rot	ating shallow-water and wave dynamics	95
	4.1	Rotating shallow-water equations	97
		4.1.1 Integral and parcel invariants	101
	4.2	Linear wave solutions	104
		4.2.1 Geostrophic mode	106
		4.2.2 Inertia-gravity waves	107
		4.2.3 Kelvin waves	109
	4.3	Geostrophic adjustment	111
	4.4	Gravity wave steepening: bores and breakers	120
	4.5	Stokes drift and material transport	126
	4.6	Quasigeostrophy	129
	4.7	Rossby waves	133
	4.8	Rossby-wave emission	134
		4.8.1 Vortex propagation on the β -plane	135
		4.8.2 Eastern boundary Kelvin wave	138
5	Bar	oclinic and iet dynamics	141
•	5.1	Lavered hydrostatic model	143
	- • •	5.1.1 Two-layer equations	143
		5.1.2 <i>N</i> -laver equations	147
		5.1.3 Vertical modes	149

			Contents	vii
	5.2	Baroc	linic instability	155
		5.2.1	Unstable modes	156
		5.2.2	Upshear phase tilt	160
		5.2.3	Eddy heat flux	161
		5.2.4	Effects on the mean flow	162
	5.3	Turbu	lent baroclinic zonal jet	164
		5.3.1	Posing the jet problem	164
		5.3.2	Equilibrium velocity and buoyancy structure	167
		5.3.3	Zonal momentum balance	171
		5.3.4	Potential vorticity homogenization	177
		5.3.5	Meridional overturning circulation and mass balance	177
		5.3.6	Meridional heat balance	180
		5.3.7	Maintenance of the general circulation	181
	5.4	Rectif	ication by Rossby-wave radiation	182
6	Bou	ndary-	layer and wind-gyre dynamics	186
	6.1	Planet	ary boundary layer	186
		6.1.1	Boundary-layer approximations	187
		6.1.2	The shear boundary layer	192
		6.1.3	Eddy-viscosity closure	196
		6.1.4	Bottom Ekman layer	197
		6.1.5	Oceanic surface Ekman layer	201
		6.1.6	Vortex spin down	205
		6.1.7	Turbulent Ekman layer	206
	6.2	Ocean	ic wind gyre and western boundary layer	213
		6.2.1	Posing the gyre problem	215
		6.2.2	Interior and boundary-layer circulations	219
		6.2.3	Application to real gyres	224
		6.2.4	Turbulent baroclinic wind gyres	228
Af	terwo	rd		233
Ex	ercise	<i>2S</i>		234
Re	feren	ces		243
Index 24			245	
Cc	Colour plate section appears between pages 94 and 95			

Preface

Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. On the planetary scale they combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. It seeks to identify and analyze the essential dynamical processes that lie behind observed phenomena. As with any other theoretical science of complex nonlinear dynamics, mathematical analysis and computational modeling are essential research methodologies, and there is a continuing search for more powerful, accurate, and efficient techniques.

This book is an introduction to GFD for readers interested in doing research in the physics, chemistry, and/or biology of Earth's fluid environment. It is a product of teaching a first-year graduate course at the Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (UCLA) for many years. It is only an introduction to the subject; additional, more specialized GFD courses are required to fully prepare for practicing research in the subject. Nevertheless, to stimulate students' enthusiasm, the contents are a mixture of rudimentary mathematical analyses and somewhat complex dynamical outcomes. Students in this course are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. In the present graduate curriculum at UCLA, students are first exposed to one course on basic fluid dynamics and thermodynamics and another course on the principal phenomena of winds and currents and their underlying conceptual models. This background comprises the starting point for the book.

х

Preface

GFD is a mature subject, having had its adolescence in the middle of the last century. Consequently many meritorious books already exist. Most of them are specialized in their material, but several of the more general ones are usefully complementary to this book, e.g., Cushman-Roisin (1994), Gill (1982), Holton (2004), Pedlosky (1987), Salmon (1998), and Stern (1975).

Symbols

Symbols	Name	First usage
a	Earth's radius	Section 2.4
*	boundary location	Eq. (4.61)
a	initial position of a parcel	Eq. (2.1)
Α	absolute momentum	Before Eq. (4.54)
	wind gyre forcing amplitude	Eq. (6.62)
\mathcal{A}	horizontal area within \mathcal{C}	Eq. (3.17)
APE	available potential energy	Eq. (4.20)
b	pycnocline depth	Eq. (4.9)
	buoyancy, $-g\rho/\rho_0$	Eq. (5.9)
В	topographic elevation	Eq. (4.1)
${\mathcal B}$	Burger number	Eq. (4.105)
<i>c</i> , <i>C</i>	phase speed	Eqs. (3.94) and (5.57)
c _g	wave group velocity	Eq. (4.34)
c _p	heat capacity (constant pressure)	Eq. (2.38)
c _p	wave phase velocity	Eq. (4.33)
c _v	heat capacity (constant volume)	After Eq. (2.12)
С	circulation	Eq. (2.27)
Cs	speed of sound	Eq. (2.41)
${\mathcal C}$	closed line	Eq. (2.27)
D	western boundary layer width	Eq. (6.62)
\mathcal{D}	isopycnal form stress	Eq. (5.87)
$\mathcal{D}_{\mathrm{bot}}$	topographic form stress	Eq. (5.86)
D/Dt or D_t	substantial derivative	Eq. (2.3)
e	internal energy	Eq. (2.9)
ê	unit vector	Eq. (2.57)

* the dash symbol denotes the same symbol with a different meaning.

xii	Symbols	
Symbols	Name	First usage
E	volume-integrated total energy	Eq. (2.23)
_	Ekman number	Eq. (6.44)
Ε	Eliassen–Palm flux	Eq. (5.103)
Е	local total energy density	Eq. (2.22)
Ens	enstrophy	Eq. (3.111)
f	Coriolis frequency	Eq. (2.89)
$f_{\rm h}$	horizontal Coriolis frequency	Eq. (2.114)
F(p)	pressure coordinate	Eqs. (2.74) and (2.75)
F	non-conservative force	Eq. (2.2)
F	boundary function	Eq. (2.13)
${\mathcal F}$	$\hat{\mathbf{z}} \cdot \mathbf{\nabla} imes \mathbf{F}$	Eq. (3.24)
Fr	Froude number	Eq. (4.42)
8	gravitational acceleration	After Eq. (2.2)
g'	reduced gravity	Eq. (4.12)
$g'_{ m I}$	two-layer reduced gravity	Eq. (5.2)
$g'_{n+0.5}$	N-layer reduced gravity	Eq. (5.20)
G	pressure function	Eq. (2.85)
$G_m(n), G_m(z)$	modal transformation function	Eq. (5.29)
h	free-surface height	Eq. (2.17)
_	layer thickness	Eq. (4.1)
—	boundary-layer thickness	Section 6.1
$h_{\rm ek}$	Ekman layer depth	After Eq. (6.44)
$h_{\rm pycnocline}$	depth of oceanic pycnocline	After Eq. (6.78)
h_*	sea-level with a rigid-lid approximation	Eq. (2.44)
—	turbulent Ekman layer thickness	Eq. (6.45)
Н	oceanic depth	Section 2.2.3
	atmospheric height	Eqs. (2.64)–(2.66)
	vertical scale	Section 2.3.4
	Hamiltonian function	Eq. (3.69)
H_{I}	oceanic interior thickness	Eq. (6.54)
i	$\sqrt{-1}$	After Eq. (2.70)
Ι	identity matrix	Eq. (5.42)
Ι	identity vector	Eq. (5.41)
${\mathcal I}$	vorticity angular momentum	Eq. (3.71)
J	Jacobian operator	Eq. (3.26)
k	<i>x</i> wavenumber	Eq. (3.32)
—	wavenumber vector magnitude, $ \mathbf{k} $	After Eq. (3.113)

	Symbols	xiii
Symbols	Name	First usage
k _E	energy centroid wavenumber	Eq. (3.116)
k	wavenumber vector	Eq. (3.112)
k _*	dominant wavenumber component	Eq. (4.34)
Κ	wavenumber magnitude	Eq. (4.37)
	von Karmen's constant	Eq. (6.49)
KE	kinetic energy	Eq. (3.2)
l,ℓ	y wavenumber	Eq. (3.32)
L	(horizontal) length scale	Before Eq. (2.5)
L_{β}	Rhines scale	Eq. (4.127)
P 	inertial western boundary current width	Eq. (6.78)
$L_{\rm r}$	zonal domain width	After Eq. (6.64)
L_{v}^{λ}	meridional domain width	Section 5.3.1
$L_{ au}^{y}$	horizontal scale of wind stress	Section 5.3.1
m	azimuthal wavenumber	Eq. (3.76)
	vertical mode number	Eq. (5.29)
М	Mach number	Eq. (2.41)
	mass	Eq. (4.14)
n	vertical layer number	Eq. (5.18)
ĥ	unit vector in normal direction	After Eq. (2.15)
N(z)	buoyancy frequency	Eq. (2.69)
N	number of vertical layers	Before Eq. (5.18)
$\mathcal{N}(z)$	buovancy frequency	After Eq. (5.28)
r	trajectory	Near Eq. (2.1)
p	pressure	Eq. (2.2)
P	oscillation period	After Eq. (2.70)
	centrifugal pressure	Eq. (2.97)
	potential vorticity matrix operator	Eq. (5.42)
PE	potential energy	Eq. (4.19)
${\mathcal P}$	discriminant for baroclinic instability	Eq. (5.64)
a	specific humidity	After Eq. (2.12)
9 	potential vorticity	Eqs. (3.28) and (4.24)
lloc	quasigeostrophic potential vorticity	Eq. (4.113)
ч <u>у</u> о <i>0</i> г	Ertel potential vorticity	Eq. (5.25)
	isentropic potential vorticity for	Eq. (5.24)
JIFE	primitive equations	- 1 . (
0	potential vorticity	Ea (456)
$\tilde{\Omega}$	heating rate	Eq. (2.9)
$ ilde{\mathcal{Q}}$	potential heating rate	Eq. (2.52)

xiv	Symbols	
Symbols	Name	First usage
r	radial coordinate	Eq. (3.44)
	damping rate	Eq. (5.104)
R	gas constant	Eq. (2.47)
	deformation radius	Eq. (4.43)
R _e	external deformation radius	After Eq. (2.111)
R_m	deformation radius for mode m	Eq. (5.39)
Re	Reynolds number	Eq. (2.5)
Re _e	eddy Reynolds number	After Eq. (6.24)
Re_{g}	grid Reynolds number	Section 6.1.7
Ro	Rossby number	Eq. (2.102)
${\mathcal R}$	horizontal Reynolds stress	After Eq. (3.98)
	dispersion-to-advection ratio for	Eq. (4.124)
	Rossby waves	
S	streamline coordinate	After Eq. (2.1)
	instability growth rate	Eq. (3.88)
S	salinity	After Eq. (2.12)
_	strain rate	Fig. (2.3) and Eq. (3.51)
—	spectrum	Eq. (3.113)
_	stretching vorticity matrix operator	Eq. (5.46)
8	non-conservative material source	Eq. (2.7)
—	material surface	Eq. (2.25)
${\mathcal S}_f$	sign of f	Eq. (6.27)
t	time coordinate	Before Eq. (2.1)
t _d	spin-down time	Eq. (6.43)
Т	time scale	After Eq. (2.5)
—	temperature	Eq. (2.11)
Т	depth-integrated horizontal column transport	Eq. (6.21)
T _{ek}	Ekman layer horizontal column	Eq. (6.52)
	transport	
T_{\perp}	horizontal volume transport	Eq. (6.74)
и	eastward velocity component	Before Eq. (2.2)
<i>u</i> _*	friction velocity	Eq. (6.45)
u	vector velocity	Before Eq. (2.1)
ug	geostrophic horizontal velocity	Eq. (2.103)
ua	ageostrophic horizontal velocity	Before Eq. (4.112)
u st	Stokes drift	Eq. (4.95)
U	radial velocity	Eq. (3.45)

<i>Symbols</i> xv			
Symbols	Name	First usage	
U	rotating-frame velocity	Eq. (2.93)	
	mean zonal velocity	Eq. (3.96)	
	depth-averaged zonal velocity	Eq. (6.59)	
\mathbf{U}^*	eddy-induced velocity	After (5.98)	
v	northward velocity component	Before Eq. (2.2)	
V	(horizontal) velocity scale	Before Eq. (2.5)	
	rotating-frame velocity	Eq. (2.93)	
	azimuthal velocity	Eq. (3.45)	
	depth-averaged meridional velocity	Eq. (6.59)	
V^*	northward eddy-induced velocity	Eq. (5.97)	
\mathcal{V}	material volume	Eq. (2.25)	
w	upward (vertical) velocity component	Before Eq. (2.2)	
w_*	upward surface velocity with a rigid-lid approximation	Eq. (2.44)	
w_{ek}	Ekman pumping velocity	Eq. (6.22)	
w _{OG}	quasigeostrophic vertical velocity	Eq. (5.49)	
W	vertical velocity scale	Section 2.3.4	
W^*	upward eddy-induced velocity	Eq. (5.98)	
x	eastward coordinate	Before Eq. (2.2)	
X	spatial position vector	Before Eq. (2.1)	
â	unit eastward vector	Section 2.1.2	
X	divergent velocity potential	Eq. (2.29)	
X	streamline	After Eq. (2.1)	
$\mathbf{X} = (X, Y)$	rotating coordinate vector	Eq. (2.91)	
	streamfunction horizontal-centroid	Eq. (4.126)	
X	vorticity x-centroid	Eq. (3.71)	
У	northward coordinate	Before Eq. (2.2)	
ŷ	unit northward vector	Section 2.1.2	
у	vorticity y-centroid	Eq. (3.71)	
Ζ.	upward coordinate	Before Eq. (2.2)	
z_o	roughness length	Eq. (6.49)	
ź	unit upward vector	Section 2.1.2	
Ζ	geopotential height	After Eq. (2.38)	
	isentropic height	Eq. (5.24)	
α	thermal expansion coefficient	Eq. (2.34)	
	point vortex index	Eq. (3.60)	
β	haline contraction coefficient	Eq. (2.35)	

xvi	Symbols	
Symbols	Name	First usage
β	Coriolis frequency gradient	Eq. (2.89)
_	point vortex index	Eq. (3.63)
γ	pressure expansion coefficient	Eq. (2.36)
_	gas constant ratio	After Eq. (2.51)
_	Reimann invariant	Eq. (4.85)
Γ	solution of characteristic equation	After Eq. (4.85)
δ	divergence	Eq. (2.24)
δ, Δ	incremental change	After Eq. (2.28), Fig. 2.3
$\delta_{p,q}$	discrete delta function	Eq. (3.108)
έ	wave steepness	Section 4.4
	small expansion parameter	Eq. (4.106)
ϵ_{bot}	bottom damping coefficient	Before Eq. (5.80)
ζ, ζ^z	vertical vorticity	Eq. (3.5)
ζ	vector vorticity	Eq. (2.26)
η	entropy	Eq. (2.11)
	interface height	Eq. (4.1)
θ	potential temperature	Eq. (2.51)
	latitude	Eq. (2.87)
	azimuthal coordinate	Eq. (3.44)
	complex phase angle	Eq. (5.72)
Θ	wave phase function	After Eq. (4.92)
κ	diffusivity	After Eq. (2.8)
	gas constant ratio	After Eq. (2.51)
λ	wavelength	After Eq. (4.33)
	inverse Ekman layer depth	Eq. (6.29)
λ_0	phase constant	Eq. (2.120)
μ	chemical potential	Eq. (2.11)
	$(KR)^{-2}$	Eq. (5.71)
ν	viscosity	After Eq. (2.2)
$\nu_{\rm e}$	eddy viscosity	Eqs. (3.102) and (6.23)
$\nu_{\rm h}, \nu_{\rm v}$	horizontal, vertical eddy viscosity	Eq. (5.80)
ξ	Lagrangian parcel displacement	Eq. (4.58)
	characteristic coordinate	Eq. (4.86)
	western boundary layer coordinate	Eq. (6.68)
ρ	density	Eq. (2.2)
$ ho_{ m pot}$	potential density	Eq. (2.51)
σ	instability growth rate	Eq. (3.79)
au	material concentration	Eq. (2.7)

	Symbols	xvii
Symbols	Name	First usage
$ au_{ m s}$	surface stress	Before Eq. (5.80)
ϕ, Φ	geopotential function	Eqs. (2.38) and (2.80)
Φ	force potential	Eq. (2.2)
χ	divergent velocity potential	Eq. (2.29)
ψ	streamfunction	Eq. (2.29)
Ψ	transport streamfunction	Eq. (6.59)
ω	cross-isobaric velocity	Eq. (2.79)
	oscillation frequency	Eq. (3.32)
Ω, Ω	rotation rate, vector	Eq. (2.87)
Ω _e	Earth's rotation vector	Eq. (2.87)
∇	gradient operator	After Eq. (2.2)
\mathbf{V}_{h}	horizontal gradient operator	Eq. (2.31)
$\frac{\partial}{\partial z}$ or ∂_z	partial derivative with respect to, e.g., z	After Eq. (2.30)
.	averaging operator	Before Eq. (2.67)
$\langle \cdot \rangle$	zonal averaging operator	Eq. (3.97)
.*	complex conjugate	Eq. (3.66)
.′	fluctuation operator	Eq. (3.72)
ĩ	modal coefficient	Eq. (5.29)

Ξ