An Introduction to General Relativity and Cosmology

General relativity is a cornerstone of modern physics, and is of major importance in its applications to cosmology. Experts in the field Plebański and Krasiński provide a thorough introduction to general relativity to guide the reader through complete derivations of the most important results.

An Introduction to General Relativity and Cosmology is a unique text that presents a detailed coverage of cosmology as described by exact methods of relativity and inhomogeneous cosmological models. Geometric, physical and astrophysical properties of inhomogeneous cosmological models and advanced aspects of the Kerr metric are all systematically derived and clearly presented so that the reader can follow and verify all details. The book contains a detailed presentation of many topics that are not found in other textbooks.

This textbook for advanced undergraduates and graduates of physics and astronomy will enable students to develop expertise in the mathematical techniques necessary to study general relativity.

An Introduction to General Relativity and Cosmology

Jerzy Plebański

Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional Apartado Postal 14-740, 07000 México D.F., Mexico

Andrzej Krasiński

Centrum Astronomiczne im. M. Kopernika, Polska Akademia Nauk, Bartycka 18, 00 716 Warszawa, Poland

© Cambridge University Press

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521856232

© J. Plebański and A. Krasiński 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2006

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-85623-2 hardback ISBN-10 0-521-85623-X hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of figures			page xiii
Th	The scope of this text		
Ac	knowl	edgements	xix
1	How the theory of relativity came into being (a brief historical sketch)		
	1.1	Special versus general relativity	1
	1.2	Space and inertia in Newtonian physics	1
	1.3	Newton's theory and the orbits of planets	2
	1.4	The basic assumptions of general relativity	4
Pa	rt I	Elements of differential geometry	7
2	A sh	ort sketch of 2-dimensional differential geometry	9
	2.1	Constructing parallel straight lines in a flat space	9
	2.2	Generalisation of the notion of parallelism to curved surfaces	10
3	Tens	ors, tensor densities	13
	3.1	What are tensors good for?	13
	3.2	Differentiable manifolds	13
	3.3	Scalars	15
	3.4	Contravariant vectors	15
	3.5	Covariant vectors	16
	3.6	Tensors of second rank	16
	3.7	Tensor densities	17
	3.8	Tensor densities of arbitrary rank	18
	3.9	Algebraic properties of tensor densities	18
	3.10	Mappings between manifolds	19
	3.11	The Levi-Civita symbol	22
	3.12	Multidimensional Kronecker deltas	23
	3.13	Examples of applications of the Levi-Civita symbol and of the	
		multidimensional Kronecker delta	24
	3.14	Exercises	25

vi		Contents	
4	Cova	riant derivatives	26
	4.1	Differentiation of tensors	26
	4.2	Axioms of the covariant derivative	28
	4.3	A field of bases on a manifold and scalar components of tensors	29
	4.4	The affine connection	30
	4.5	The explicit formula for the covariant derivative of tensor density fields	31
	4.6	Exercises	32
5	Para	llel transport and geodesic lines	33
	5.1	Parallel transport	33
	5.2	Geodesic lines	34
	5.3	Exercises	35
6	The	curvature of a manifold; flat manifolds	36
	6.1	The commutator of second covariant derivatives	36
	6.2	The commutator of directional covariant derivatives	38
	6.3	The relation between curvature and parallel transport	39
	6.4	Covariantly constant fields of vector bases	43
	6.5	A torsion-free flat manifold	44
	6.6	Parallel transport in a flat manifold	44
	6.7	Geodesic deviation	45
	6.8	Algebraic and differential identities obeyed by the curvature tensor	46
	6.9	Exercises	47
7	Riem	annian geometry	48
	7.1	The metric tensor	48
	7.2	Riemann spaces	49
	7.3	The signature of a metric, degenerate metrics	49
	7.4	Christoffel symbols	51
	7.5	The curvature of a Riemann space	51
	7.6	Flat Riemann spaces	52
	7.7	Subspaces of a Riemann space	53
	7.8	Flat Riemann spaces that are globally non-Euclidean	53
	7.9	The Riemann curvature versus the normal curvature of a surface	54
	7.10	The geodesic line as the line of extremal distance	55
	7.11	Mappings between Riemann spaces	56
	7.12	Conformally related Riemann spaces	56
	7.13	Conformal curvature	58
	7.14	Timelike, null and spacelike intervals in a 4-dimensional spacetime	61
	7.15	Embeddings of Riemann spaces in Riemann spaces of higher dimension	63
	7.16	The Petrov classification	70
	7.17	Exercises	72

		Contents	vii
8	8 Symmetries of Riemann spaces, invariance of tensors		
8.1 Symmetry transformations		Symmetry transformations	74
	8.2	The Killing equations	75
	8.3	The connection between generators and the invariance transformations	77
	8.4	Finding the Killing vector fields	78
	8.5	Invariance of other tensor fields	79
	8.6	The Lie derivative	80
	8.7	The algebra of Killing vector fields	81
	8.8	Surface-forming vector fields	81
	8.9	Spherically symmetric 4-dimensional Riemann spaces	82
	8.10	* Conformal Killing fields and their finite basis	86
	8.11	* The maximal dimension of an invariance group	89
	8.12	Exercises	91
9	Meth	ods to calculate the curvature quickly – Cartan forms and algebraic	
	comp	puter programs	94
	9.1	The basis of differential forms	94
	9.2	The connection forms	95
	9.3	The Riemann tensor	96
	9.4	Using computers to calculate the curvature	98
	9.5	Exercises	98
10	The s	spatially homogeneous Bianchi type spacetimes	99
	10.1	The Bianchi classification of 3-dimensional Lie algebras	99
	10.2	The dimension of the group versus the dimension of the orbit	104
	10.3	Action of a group on a manifold	105
	10.4	Groups acting transitively, homogeneous spaces	105
	10.5	Invariant vector fields	106
	10.6	The metrics of the Bianchi-type spacetimes	108
	10.7	The isotropic Bianchi-type (Robertson-Walker) spacetimes	109
	10.8	Exercises	112
11	* Th	e Petrov classification by the spinor method	113
	11.1	What is a spinor?	113
	11.2	Translating spinors to tensors and vice versa	114
	11.3	The spinor image of the Weyl tensor	116
	11.4	The Petrov classification in the spinor representation	116
	11.5	The Weyl spinor represented as a 3×3 complex matrix	117
	11.6	The equivalence of the Penrose classes to the Petrov classes	119
	11.7	The Petrov classification by the Debever method	120
	11.8	Exercises	122

viii Contents					
Par	Part IIThe theory of gravitation123				
12	2 The Einstein equations and the sources of a gravitational field				
	12.1	Why Riemannian geometry?	125		
	12.2	Local inertial frames	125		
	12.3	Trajectories of free motion in Einstein's theory	126		
	12.4	Special relativity versus gravitation theory	129		
	12.5	The Newtonian limit of relativity	130		
	12.6	Sources of the gravitational field	130		
	12.7	The Einstein equations	131		
	12.8	Hilbert's derivation of the Einstein equations	132		
	12.9	The Palatini variational principle	136		
	12.10	The asymptotically Cartesian coordinates and the asymptotically			
		flat spacetime	136		
	12.11	The Newtonian limit of Einstein's equations	136		
	12.12	Examples of sources in the Einstein equations: perfect fluid and dust	140		
	12.13	Equations of motion of a perfect fluid	143		
	12.14	The cosmological constant	144		
	12.15	An example of an exact solution of Einstein's equations: a Bianchi			
		type I spacetime with dust source	145		
	12.16	* Other gravitation theories	149		
		12.16.1 The Brans–Dicke theory	149		
		12.16.2 The Bergmann–Wagoner theory	150		
		12.16.3 The conformally invariant Canuto theory	150		
		12.16.4 The Einstein–Cartan theory	150		
		12.16.5 The bi-metric Rosen theory	151		
		Matching solutions of Einstein's equations	151		
	12.18	The weak-field approximation to general relativity	154		
	12.19	Exercises	160		
13	The M	laxwell and Einstein–Maxwell equations and the			
	Kaluz	a–Klein theory	161		
	13.1	The Lorentz-covariant description of electromagnetic field	161		
	13.2	The covariant form of the Maxwell equations	161		
	13.3	The energy-momentum tensor of an electromagnetic field	162		
	13.4	The Einstein–Maxwell equations	163		
	13.5	* The variational principle for the Einstein-Maxwell equations	164		
	13.6	* The Kaluza–Klein theory	164		
	13.7	Exercises	167		
14	Spher	ically symmetric gravitational fields of isolated objects	168		
	14.1	The curvature coordinates	168		
	14.2	Symmetry inheritance	172		

	Contents		ix
	14.3 Spherically symmetric electromagnetic field in vacuum		
	14.4	The Schwarzschild and Reissner–Nordström solutions	173
	14.5	Orbits of planets in the gravitational field of the Sun	176
	14.6	Deflection of light rays in the Schwarzschild field	183
	14.7	Measuring the deflection of light rays	186
	14.8	Gravitational lenses	189
	14.9	The spurious singularity of the Schwarzschild solution at $r = 2m$	191
	14.10	* Embedding the Schwarzschild spacetime in a flat	
		Riemannian space	
	14.11	Interpretation of the spurious singularity at $r = 2m$; black holes	200
	14.12	The Schwarzschild solution in other coordinate systems	202
	14.13	The equation of hydrostatic equilibrium	203
	14.14	The 'interior Schwarzschild solution'	206
	14.15	* The maximal analytic extension of the Reissner-Nordström	
		solution	207
	14.16	* Motion of particles in the Reissner-Nordström spacetime	
		with $e^2 < m^2$	217
	14.17	Exercises	219
15	Relativistic hydrodynamics and thermodynamics		
	15.1	Motion of a continuous medium in Newtonian mechanics	222
	15.2	Motion of a continuous medium in relativistic mechanics	224
	15.3	The equations of evolution of θ , $\sigma_{\alpha\beta}$, $\omega_{\alpha\beta}$ and \dot{u}^{α} ;	
		the Raychaudhuri equation	228
	15.4	Singularities and singularity theorems	230
	15.5	Relativistic thermodynamics	231
	15.6	Exercises	234
16	Relati	vistic cosmology I: general geometry	235
	16.1	A continuous medium as a model of the Universe	235
	16.2	Optical observations in the Universe – part I	237
		16.2.1 The geometric optics approximation	237
		16.2.2 The redshift	239
	16.3	The optical tensors	240
	16.4	The apparent horizon	242
	16.5	* The double-null tetrad	243
	16.6	* The Goldberg–Sachs theorem	245
	16.7	* Optical observations in the Universe – part II	253
		16.7.1 The area distance	253
		16.7.2 The reciprocity theorem	256
		16.7.3 Other observable quantities	259
	16.8	Exercises	260

х		Contents	
17	Relati	vistic cosmology II: the Robertson–Walker geometry	261
	17.1	The Robertson-Walker metrics as models of the Universe	261
	17.2	Optical observations in an R-W Universe	263
		17.2.1 The redshift	263
		17.2.2 The redshift–distance relation	265
		17.2.3 Number counts	265
	17.3	The Friedmann equations and the critical density	266
	17.4	The Friedmann solutions with $\Lambda = 0$	269
		17.4.1 The redshift–distance relation in the $\Lambda = 0$	
		Friedmann models	270
	17.5	The Newtonian cosmology	271
	17.6	The Friedmann solutions with the cosmological constant	273
	17.7	Horizons in the Robertson-Walker models	277
	17.8	The inflationary models and the 'problems' they solved	282
	17.9	The value of the cosmological constant	286
	17.10	The 'history of the Universe'	287
	17.11	Invariant definitions of the Robertson-Walker models	290
	17.12	Different representations of the R-W metrics	291
	17.13	Exercises	293
18	Relati	vistic cosmology III: the Lemaître–Tolman geometry	294
	18.1	The comoving-synchronous coordinates	294
	18.2	The spherically symmetric inhomogeneous models	294
	18.3	The Lemaître–Tolman model	296
	18.4	Conditions of regularity at the centre	300
	18.5	Formation of voids in the Universe	301
	18.6	Formation of other structures in the Universe	303
		18.6.1 Density to density evolution	304
		18.6.2 Velocity to density evolution	306
		18.6.3 Velocity to velocity evolution	308
	18.7	The influence of cosmic expansion on planetary orbits	309
	18.8	* Apparent horizons in the L-T model	311
	18.9	* Black holes in the evolving Universe	316
	18.10	* Shell crossings and necks/wormholes	321
		18.10.1 $E < 0$	325
		18.10.2 $E = 0$	327
		18.10.3 $E > 0$	327
	18.11	The redshift	328
	18.12	The influence of inhomogeneities in matter distribution on the	
		cosmic microwave background radiation	330
	18.13	Matching the L-T model to the Schwarzschild and	
		Friedmann solutions	332

			Contents	xi
	18.14 * General properties of the Big Bang/Big Crunch singularities in the			
		L–T mo		332
	18.15	* Extend	ling the L–T spacetime through a shell crossing singularity	337
	18.16		arities and cosmic censorship	339
	18.17	-	the 'horizon problem' without inflation	347
	18.18	-	volution of $R(t, M)$ versus the evolution of $\rho(t, M)$	348
	18.19	* Increa	sing and decreasing density perturbations	349
	18.20	* L&T o	curio shop	353
		18.20.1	Lagging cores of the Big Bang	353
		18.20.2	Strange or non-intuitive properties of the L-T model	353
		18.20.3	Chances to fit the L-T model to observations	357
		18.20.4	An 'in one ear and out the other' Universe	357
		18.20.5	A 'string of beads' Universe	359
		18.20.6	Uncertainties in inferring the spatial distribution of matter	359
		18.20.7	Is the matter distribution in our Universe fractal?	362
		18.20.8	General results related to the L-T models	362
	18.21	Exercise	'S	363
19	Relati	vistic cosi	mology IV: generalisations of L–T and related geometries	367
	19.1		ne- and hyperbolically symmetric spacetimes	367
	19.2	G_3/S_2 -s	ymmetric dust solutions with $R_{r} \neq 0$	369
	19.3	G_3/S_2 -s	ymmetric dust in electromagnetic field, the case $R_{r,r} \neq 0$	369
		19.3.1	Integrals of the field equations	369
		19.3.2	Matching the charged dust metric to the Reissner-Nordström	
			metric	375
		19.3.3	Prevention of the Big Crunch singularity by electric charge	377
		19.3.4	* Charged dust in curvature and mass-curvature coordinates	379
		19.3.5	Regularity conditions at the centre	382
		19.3.6	* Shell crossings in charged dust	383
	19.4	The Dat	t–Ruban solution	384
	19.5	The Sze	keres-Szafron family of solutions	387
		19.5.1	The $\beta_{z} = 0$ subfamily	388
		19.5.2	The $\beta_{z} \neq 0$ subfamily	392
		19.5.3	Interpretation of the Szekeres-Szafron coordinates	394
		19.5.4	Common properties of the two subfamilies	396
		19.5.5	* The invariant definitions of the Szekeres–Szafron metrics	397
	19.6		keres solutions and their properties	399
		19.6.1	The $\beta_{z} = 0$ subfamily	399
		19.6.2	The $\beta_{z} \neq 0$ subfamily	400
		19.6.3	* The $\beta_{z} = 0$ family as a limit of the $\beta_{z} \neq 0$ family	401
	19.7		es of the quasi-spherical Szekeres solutions with $\beta_{z} \neq 0 = \Lambda$	403
		19.7.1	Basic physical restrictions	403
		19.7.2	The significance of \mathcal{E}	404

The significance of \mathcal{E} 19.7.2

xii	Contents		
		19.7.3 Conditions of regularity at the origin	407
		19.7.4 Shell crossings	410
		19.7.5 Regular maxima and minima	413
		19.7.6 The apparent horizons	414
		19.7.7 Szekeres wormholes and their properties	418
		19.7.8 The mass-dipole	419
	19.8	* The Goode–Wainwright representation of the Szekeres solutions	421
	19.9	Selected interesting subcases of the Szekeres-Szafron family	426
		19.9.1 The Szafron–Wainwright model	426
		19.9.2 The toroidal Universe of Senin	428
	19.10	* The discarded case in (19.103)–(19.112)	431
	19.11	Exercises	435
20	The K	err solution	438
	20.1	The Kerr–Schild metrics	438
	20.2	The derivation of the Kerr solution by the original method	441
	20.3	Basic properties	447
	20.4	* Derivation of the Kerr metric by Carter's method – from the	
		separability of the Klein–Gordon equation	452
	20.5	The event horizons and the stationary limit hypersurfaces	459
	20.6	General geodesics	464
	20.7	Geodesics in the equatorial plane	466
	20.8	* The maximal analytic extension of the Kerr spacetime	475
	20.9	* The Penrose process	486
	20.10	Stationary-axisymmetric spacetimes and locally nonrotating	
		observers	487
	20.11	* Ellipsoidal spacetimes	490
	20.12	A Newtonian analogue of the Kerr solution	493
	20.13	A source of the Kerr field?	494
	20.14	Exercises	495
21	Subjee	ets omitted from this book	498
Ref	erences		501
Ind	ndex 5		

Index

Figures

1.1	Real planetary orbits.	page 3
1.2	A vehicle flying across a light ray.	5
2.1	Parallel straight lines.	9
2.2	Parallel transport on a curved surface.	11
2.3	Parallel transport on a sphere.	11
6.1	One-parameter family of loops.	41
7.1	A light cone.	61
7.2	A non geodesic null line.	62
7.3	The Petrov classification.	71
8.1	A mapping of a manifold.	74
8.2	Surface-forming vector fields.	82
11.1	The Penrose–Petrov classification.	117
12.1	Fermi coordinates.	127
12.2	Gravitational field of a finite body.	157
14.1	Deflection of light rays.	185
14.2	Measuring the deflection of light, Eddington's method.	187
14.3	Measuring the deflection of microwaves.	188
14.4	A gravitational lens.	189
14.5	Graph of $\xi(r) = r + 2m \ln \left \frac{r}{2m} - 1 \right $.	193
14.6	The Kruskal diagram.	195
14.7	The surface $\{t = \text{const}, \vartheta = \pi/2\}$ in the Schwarzschild spacetime.	197
14.8	Embedding of the Schwarzschild spacetime in six dimensions projected	
	onto (Z_1, Z_2, Z_3) .	198
14.9	Embedding of the Schwarzschild spacetime in six dimensions projected	
	onto (Z_3, Z_4, Z_5) .	199
14.10	The maximally extended Reissner–Nordström spacetime, $e^2 < m^2$.	211
14.11	The 'throat' in the Schwarzschild and in the R-N spacetime.	213
14.12	Embeddings of the $v = 0$ surface.	214
14.13	Surfaces of Fig. 14.12 placed in correct positions.	214
14.14	Maximal extension of the extreme R-N metric.	216

xiv	Figures	
14.15	Embeddings of the { $t = \text{const}, \vartheta = \pi/2$ } surface of the extreme	
	R–N metric.	217
15.1	An everywhere concave function.	231
16.1	Refocussing of light in the Universe.	255
16.2	Reciprocity theorem.	256
17.1	R(t) in Friedmann models.	270
17.2	Curves $\dot{R} = 0$ in the (R, λ) plane.	274
17.3	Recollapsing Friedmann models.	275
17.4	$\lambda = \lambda_{\rm E}$ Friedmann models.	276
17.5	Remaining Friedmann models.	277
17.6	Illustration to (17.62).	280
17.7	The 'horizon problem' in R–W.	283
18.1	Black hole in the $E < 0$ L–T model.	318
18.2	3-d graph of black hole formation.	319
18.3	Contours of constant <i>R</i> -value.	320
18.4	The compactified diagram of Fig. 18.1.	322
18.5	The event horizon in the frame of Fig. 18.1.	323
18.6	A neck.	326
18.7	Radial rays in around central singularity.	335
18.8	A shell crossing in comoving coordinates.	339
18.9	A shell crossing in Gautreau coordinates.	340
18.10	A naked shell crossing.	343
18.11	Solutions of $s = S - sS'$.	346
18.12	Solution of the 'horizon problem' in L-T.	348
18.13	Evolution of the (t, r) subspace in (18.198).	356
18.14	The model of (18.202)–(18.205).	358
18.15	A 'string of beads' Universe.	360
19.1	Stereographic projection to Szekeres-Szafron coordinates.	396
19.2	Circles C1 and C2 projected as disjoint.	417
19.3	Circles C1 and C2 projected one inside the other.	417
19.4	A Szekeres wormhole as a handle.	419
19.5	Szafron–Wainwright model.	428
19.6	A 2-torus.	428
19.7	The 3-torus with the metric (19.311).	429
20.1	Ellipsoids and hyperboloids.	449
20.2	A surface of constant φ .	450
20.3	Space $t = \text{const}$ in the Kerr metric, case $a^2 < m^2$.	460
20.4	Space $t = \text{const}$ in the Kerr metric, case $a^2 = m^2$.	461
20.5	Space $t = \text{const}$ in the Kerr metric, case $a^2 > m^2$.	462
20.6	Light cones in the Kerr spacetime.	463
20.7	$E_{\min}(r)/\mu_0 - 1$ for different values of L_z .	468
20.8	Analogue of Fig. 20.7 for null geodesics.	470

Figures

XV

20.9	Allowed ranges of λ and ρ for null geodesics, case $a^2 < m^2$.	472
20.10	Allowed ranges of λ and ρ for null geodesics, case $a^2 = m^2$.	473
20.11	Allowed ranges of λ and ρ for null geodesics, case $a^2 > m^2$.	473
20.12	Allowed ranges of λ and ρ for timelike geodesics.	474
20.13	Extending $r > r_+$ along ℓ -field and k-field.	478
20.14	Maximally extended Kerr spacetime.	482
20.15	Axial cross-section through (20.154).	485
20.16	Maximally extended extreme Kerr spacetime.	486
20.17	A discontinuous time coordinate.	489

The scope of this text

General relativity is the currently accepted theory of gravitation. Under this heading one could include a huge amount of material. For the needs of this theory an elaborate mathematical apparatus was created. It has partly become a self-standing sub-discipline of mathematics and physics, and it keeps developing, providing input or inspiration to physical theories that are being newly created (such as gauge field theories, supergravitation, and, more recently, the brane-world theories). From the gravitation theory, descriptions of astronomical phenomena taking place in strong gravitational fields and in large-scale sub-volumes of the Universe are derived. This part of gravitation theory develops in connection with results of astronomical observations. For the needs of this area, another sophisticated formalism was created (the Parametrised Post-Newtonian formalism). Finally, some tests of the gravitational theory can be carried out in laboratories, either terrestrial or orbital. These tests, their improvements and projects of further tests have led to developments in mathematical methods and in technology that are by now an almost separate branch of science - as an example, one can mention here the (monumentally expensive) search for gravitational waves and the calculations of properties of the wave signals to be expected.

In this situation, no single textbook can attempt to present the whole of gravitation theory, and the present text is no exception. We made the working assumption that relativity is part of physics (this view is not universally accepted!). The purpose of this course is to present those results that are most interesting from the point of view of a physicist, and were historically the most important. We are going to lead the reader through the mathematical part of the theory by a rather short route, but in such a way that the reader does not have to take anything on our word, is able to verify every detail, and, after reading the whole text, will be prepared to solve several problems by him/herself. Further help in this should be provided by the exercises in the text and the literature recommended for further reading.

The introductory part (Chapters 1–7), although assembled by J. Plebański long ago, has never been published in book form.¹ It differs from other courses on relativity in that it introduces differential geometry by a top-down method. We begin with general manifolds,

¹ A part of that material had been semi-published as copies of typewritten notes (Plebański, 1964).

xviii

The scope of this text

on which no structures except tensors are defined, and discuss their basic properties. Then we add the notion of the covariant derivative and affine connection, without introducing the metric yet, and again proceed as far as possible. At that level we define geodesics via parallel displacement and we present the properties of curvature. Only at this point do we introduce the metric tensor and the (pseudo-)Riemannian geometry and specialise the results derived earlier to this case. Then we proceed to the presentation of more detailed topics, such as symmetries, the Bianchi classification and the Petrov classification.

Some of the chapters on classical relativistic topics contain material that, to the best of our knowledge, has never been published in any textbook. In particular, this applies to Chapter 8 (on symmetries) and to Chapter 16 (on cosmology with general geometry). Chapters 18 and 19 (on inhomogeneous cosmologies) are entirely based on original papers. Parts of Chapters 18 and 19 cover the material introduced in A. K.'s monograph on inhomogeneous cosmological models (Krasiński, 1997). However, the presentation here was thoroughly rearranged, extended, and brought up to date. We no longer briefly mention all contributions to the subject; rather, we have placed the emphasis on complete and clear derivations of the most important results. That material has so far existed only in scattered journal papers and has been assembled into a textbook for the first time (A. K.'s monograph (Krasiński, 1997) was only a concise review). Taken together, this collection of knowledge constitutes an important and interesting part of relativistic cosmology whose meaning has, unfortunately, not yet been appreciated properly by the astronomical community.

Most figures for this text, even when they look the same as the corresponding figures in the papers cited, were newly generated by A. K. using the program Gnuplot, sometimes on the basis of numerical calculations programmed in Fortran 90. The only figures taken verbatim from other sources are those that illustrated the joint papers by C. Hellaby and A. K.

J. Plebański kindly agreed to be included as a co-author of this text – having done his part of the job more than 30 years ago. Unfortunately, he was not able to participate actively in the writing up and proofreading. He died while the book was being edited. Therefore, the second author (A. K.) is exclusively responsible for any errors that may be found in this book.

Note for the reader. Some parts of this book may be skipped on first reading, since they are not necessary for understanding the material that follows. They are marked by asterisks. Chapters 18 and 19 are expected to be the highlights of this book. However, they go far beyond standard courses of relativity and may be skipped by those readers who wish to remain on the well-beaten track. Hesitating readers may read on, but can skip the sections marked by asterisks.

Andrzej Krasiński Warsaw, September 2005

Acknowledgements

We thank Charles Hellaby for comments on the various properties of the Lemaître– Tolman models and for providing copies of his unpublished works on this subject. Some of the figures used in this text were copied from C. Hellaby's files, with his permission. We are grateful to Pankaj S. Joshi for helpful comments on cosmic censorship and singularities, and to Amos Ori for clarifying the matter of shell crossings in charged dust. The correspondence with Amos significantly contributed to clarifying several points in Section 19.3. We are also grateful to George Ellis for his very useful comments on the first draft of this book. We thank Bogdan Mielnik and Maciej Przanowski, who were of great help in the difficult communication between one of the authors residing in Poland and the other in Mexico. M. Przanowski has carefully proofread a large part of this text and caught several errors. So did Krzysztof Bolejko, who was the first reader of this text, even before it was typed into a computer file. J. P. acknowledges the support from the Consejo Nacional de Ciencia y Tecnología projects 32427E and 41993F.