Bayesian Econometric Methods

This book is a volume in the Econometric Exercises series. It teaches principles of Bayesian econometrics by posing a series of theoretical and applied questions, and providing detailed solutions to those questions. This text is primarily suitable for graduate study in econometrics, though it can be used for advanced undergraduate courses, and should generate interest from students in related fields, including finance, marketing, agricultural economics, business economics, and other disciplines that employ statistical methods. The book provides a detailed treatment of a wide array of models commonly employed by economists and statisticians, including linear regression-based models, hierarchical models, latent variable models, mixture models, and time series models. Basics of random variable generation and simulation via Markov Chain Monte Carlo (MCMC) methods are also provided. Finally, posterior simulators for each type of model are rigorously derived, and Matlab computer programs for fitting these models (using both actual and generated data sets) are provided on the Web site accompanying the text.

Gary Koop is Professor of Economics at the University of Strathclyde. He has published numerous articles in Bayesian econometrics and statistics in journals such as the Journal of Econometrics, Journal of the American Statistical Association, and the Journal of Business and Economic Statistics. He is an associate editor for several journals, including the Journal of Econometrics and Journal of Applied Econometrics. He is the author of the books Bayesian Econometrics, Analysis of Economic Data, and Analysis of Financial Data.

Dale J. Poirier is Professor of Economics at the University of California, Irvine. He is a Fellow of the Econometric Society, the American Statistical Association, and the Journal of Econometrics. He has been on the Editorial Boards of the Journal of Econometrics and Econometric Theory and was the founding editor of Econometric Reviews. His professional activities have been numerous, and he has held elected positions in the American Statistical Association and the International Society for Bayesian Analysis. His previous books include Intermediate Statistics and Econometrics: A Comparative Approach and The Econometrics of Structural Change.

Justin L. Tobias is Associate Professor of Economics, Iowa State University, and has also served as an Assistant and Associate Professor of Economics at the University of California, Irvine. Professor Tobias has authored numerous articles in leading journals, including the International Economic Review, Journal of Applied Econometrics, Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics.
Econometric Exercises

Editors:
Karim M. Abadir, Tanaka Business School, Imperial College London, UK
Jan R. Magnus, CentER and Department of Econometrics and Operations Research, Tilburg University, The Netherlands
Peter C. B. Phillips, Cowles Foundation for Research in Economics, Yale University, USA

Titles in the Series (* = planned):
1 Matrix Algebra (K. M. Abadir and J. R. Magnus)
2 Statistics (K. M. Abadir, R. D. H. Heijmans, and J. R. Magnus)
3 Econometric Theory, I (P. Paruolo)
4 Empirical Applications, I (A. van Soest and M. Verbeek)
5 Econometric Theory, II
6 Empirical Applications, II
7 Bayesian Econometric Methods (G. Koop, D. J. Poirier, and J. L. Tobias)
 * Time Series Econometrics, I
 * Time Series Econometrics, II
 * Microeconometrics
 * Panel Data
 * Nonlinear Models
 * Nonparametrics and Semiparametrics
 * Simulation-Based Econometrics
 * Computational Methods
 * Financial Econometrics
 * Robustness
 * Econometric Methodology
Bayesian Econometric Methods

Gary Koop
University of Strathclyde, Scotland

Dale J. Poirier
University of California, Irvine, USA

Justin L. Tobias
Iowa State University, USA
To Lise
To the Reverend but not the Queen
To Melissa, Madeline, and Drew
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of exercises</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>Preface to the series</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The subjective interpretation of probability</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Bayesian inference</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Point estimation</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Frequentist properties of Bayesian estimators</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>Interval estimation</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>Hypothesis testing</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>Prediction</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>Choice of prior</td>
<td>79</td>
</tr>
<tr>
<td>9</td>
<td>Asymptotic Bayes</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>The linear regression model</td>
<td>107</td>
</tr>
<tr>
<td>11</td>
<td>Basics of Bayesian computation</td>
<td>117</td>
</tr>
<tr>
<td>11.1</td>
<td>Monte Carlo integration</td>
<td>119</td>
</tr>
<tr>
<td>11.2</td>
<td>Importance sampling</td>
<td>124</td>
</tr>
<tr>
<td>11.3</td>
<td>Gibbs sampling and the Metropolis–Hastings algorithm</td>
<td>128</td>
</tr>
<tr>
<td>11.4</td>
<td>Other (noniterative) methods for generating random variates</td>
<td>157</td>
</tr>
<tr>
<td>12</td>
<td>Hierarchical models</td>
<td>169</td>
</tr>
<tr>
<td>13</td>
<td>The linear regression model with general covariance matrix</td>
<td>191</td>
</tr>
<tr>
<td>14</td>
<td>Latent variable models</td>
<td>203</td>
</tr>
<tr>
<td>15</td>
<td>Mixture models</td>
<td>253</td>
</tr>
<tr>
<td>15.1</td>
<td>Some scale mixture of normals models</td>
<td>254</td>
</tr>
<tr>
<td>15.2</td>
<td>Other continuous and finite-mixture models</td>
<td>260</td>
</tr>
<tr>
<td>16</td>
<td>Bayesian model averaging and selection</td>
<td>281</td>
</tr>
<tr>
<td>16.1</td>
<td>Bayesian model averaging</td>
<td>282</td>
</tr>
<tr>
<td>16.2</td>
<td>Bayesian variable selection and marginal likelihood calculation</td>
<td>287</td>
</tr>
</tbody>
</table>
Contents

17 Some stationary time series models 297
18 Some nonstationary time series models 319

Appendix 335
Bibliography 343
Index 353
List of exercises

Chapter 1: The subjective interpretation of probability
1.1 Let’s make a deal ... 6
1.2 Making Dutch book ... 7
1.3 Independence and exchangeability 7
1.4 Predicted probability of success of a Bernoulli random variable 7
1.5 Independence and conditional independence 8

Chapter 2: Bayesian inference
2.1 Conjugate Bernoulli analysis ... 12
2.2 Application of Bayes’ theorem .. 13
2.3 Conjugate normal analysis with unknown mean and known variance 14
2.4 Conjugate normal analysis with unknown mean and variance 17
2.5 Properties of a normal-gamma distribution 18
2.6 Fictitious sample interpretation of natural conjugate priors 19
2.7 Conjugate normal analysis with known mean and unknown variance 20
2.8 Marginal distribution of θ_1 when $\theta_1, \theta_2 \sim NG$ 21
2.9 Conditional distribution of $\theta_2|\theta_1$ when $\theta_1, \theta_2 \sim NG$ 21
2.10 Conjugate exponential analysis .. 22
2.11 Conjugate uniform analysis ... 22
2.12 Conjugate poisson analysis ... 22
*2.13 Conjugate exponential family analysis 23
*2.14 Conjugate multivariate normal analysis 25
2.15 Identification ... 27

Chapter 3: Point estimation
3.1 Point estimation under quadratic loss 31
3.2 Point estimation under asymmetric linear loss 32
3.3 Point estimation under all-or-nothing loss 32
3.4 Point estimation under quadratic loss for conjugate Bernoulli analysis 33
3.5 Point estimation under asymmetric linear loss for conjugate Bernoulli analysis 33
3.6 Point estimation under all-or-nothing loss for conjugate Bernoulli analysis 33
3.7 Point estimation for conjugate normal analysis 34
3.8 Point estimation under weighted squared error loss 34
3.9 Point estimation under alternative squared error loss 34
3.10 Point estimation under nonconjugate normal analysis 35
List of exercises

Chapter 4: Frequentist properties of Bayesian estimators

*4.1 Sampling properties under quadratic loss in conjugate normal analysis 38
*4.2 Sampling properties under quadratic loss in conjugate exponential analysis 40
4.3 Expected bias of Bayesian point estimator ... 43
4.4 Balanced loss in conjugate normal analysis: Zellner [1994] 43
4.5 Empirical Bayes estimation .. 45
4.6 Point estimation under linex loss ... 46
4.7 Risk, Bayes risk, and admissibility: Berger [1985] ... 47
4.8 Likelihood principle ... 48

Chapter 5: Interval estimation

5.1 Graphical determination of an HPD interval .. 52
5.2 Calculating a posterior interval probability ... 53
5.3 HPD intervals under normal random sampling with known variance 54
5.4 HPD intervals under normal random sampling with unknown variance 55
5.5 Berger and Wolpert [1988, pp. 5–6] ... 57
5.6 Conditional frequentist reasoning and ancillarity .. 57
5.7 HPD intervals and reparameterization .. 58

Chapter 6: Hypothesis testing

6.1 Two simple hypotheses and general likelihood .. 62
6.2 Two simple hypotheses and normal likelihoods .. 63
*6.3 Two one-sided hypotheses and normal likelihoods .. 63
6.4 Simple null, two-sided alternative, and general likelihood 66
6.5 Simple null hypothesis, two-sided alternative, and normal likelihoods 67
6.6 Special cases of Exercise 6.5 ... 67
6.7 Relationship among posterior probabilities under different prior probabilities .. 68
6.8 Savage–Dickey density ratio ... 69
6.9 Generalized Savage–Dickey density ratio ... 69

Chapter 7: Prediction

7.1 Predictive p.m.f. for conjugate Bernoulli analysis ... 73
7.2 Predictive p.m.f. for conjugate Poisson analysis ... 73
7.3 Predictive density for conjugate normal analysis with known variance 74
7.4 Predictive point and interval estimation for conjugate normal analysis with known variance ... 75
7.5 Predictive density for conjugate multivariate normal analysis with known covariance matrix ... 75
7.6 Predictive estimation: conjugate multivariate normal analysis with known covariance matrix ... 75
7.7 Predictive density for conjugate normal analysis with unknown mean and variance ... 76
7.8 Predictive estimation: conjugate normal analysis with unknown mean and variance ... 76
7.9 Conjugate multivariate normal analysis with unknown mean and covariance matrix ... 77
7.10 Predictive density for conjugate exponential analysis 78

Chapter 8: Choice of prior

8.1 Bernoulli sampling distribution ... 82
8.2 Negative binomial sampling distribution ... 83
8.3 Kass and Wasserman [1996, Section 4.3] ... 84
8.4 Poisson sampling distribution ... 84
8.5 Exponential sampling distribution and reparameterization 85
8.6 Normal sampling distribution with unknown mean and variance 86
8.7 Hypothesis testing with improper priors ... 87
8.8 Bayes factor with a diffuse proper prior ... 87
*8.9 Strong inconsistency of improper priors ... 88

Chapter 9: Asymptotic Bayes

9.1 Posterior means ... 94
9.2 Laplace approximation of a gamma integrating constant 95
9.3 Laplace approximation of a gamma integrating constant, 2 95
9.4 Laplace approximation of a gamma integrating constant, 3 96
Chapter 10: The linear regression model

10.1 Posterior distributions under a normal-gamma prior 108
10.2 A partially informative prior ... 110
10.3 Ellipsoid bound theorem ... 111
10.4 Problems with Bayes factors using noninformative priors: Leamer [1978, p. 111] 112
10.5 Multicollinearity ... 114

Chapter 11: Basics of Bayesian computation

11.1 Numerical standard error of Monte Carlo estimate .. 119
11.2 Drawing from standard distributions ... 120
11.3 Monte Carlo integration in a regression problem .. 121

Section 11.1: Monte Carlo integration
11.1 Numerical standard error of Monte Carlo estimate .. 119
11.2 Drawing from standard distributions ... 120
11.3 Monte Carlo integration in a regression problem .. 121

Section 11.2: Importance sampling
11.4 Importance sampling .. 124
11.5 Importance sampling: prior sensitivity .. 126

Section 11.3: Gibbs sampling and the Metropolis–Hastings algorithm
11.6 Gibbs sampling .. 129
11.7 Gibbs sampling from the bivariate normal .. 130
11.8 Gibbs sampling in a regression problem .. 134
11.9 Gibbs sampling in a model of groupwise heteroscedasticity 135
11.10 Gibbs sampling in the SUR model ... 136
11.11 Gibbs sampling in a regression model with an unknown changepoint 138
11.12 Gibbs sampling in a count data model with an unknown changepoint 140
11.13 Error diagnostics with Gibbs sampling .. 142
11.14 Calculating numerical standard errors with Gibbs sampling 144
11.15 Gibbs sampling in a regression model with inequality constraints: Geweke [1996b] .. 146
11.16 Checking for errors in a posterior simulator: Geweke [2004] 150
11.18 Metropolis–Hastings algorithm, 2 ... 154

Section 11.4: Other (noniterative) methods for generating random variates
11.19 The inverse transform .. 157
11.20 Applications of the inverse transform: drawing exponential and truncated normal variates 159
11.21 Acceptance/rejection sampling .. 160
11.22 Using acceptance/rejection sampling, 1 .. 162
11.23 A generalized acceptance/rejection algorithm 162
11.24 Using acceptance/rejection sampling, 2 .. 165
11.25 The weighted bootstrap .. 167

Chapter 12: Hierarchical models

12.1 General results for normal hierarchical linear models 169
12.2 Hierarchical modeling with longitudinal data .. 171
12.3 A posterior simulator for a linear hierarchical model: Gelfand et al. [1990] 173
12.4 The linear hierarchical model, 2: estimation and convergence diagnostics ... 177
12.5 Blocking steps in random effects models .. 181
*12.6 Hierarchical recentering: Gelfand, Sahu, and Carlin [1995] 184
12.7 A hierarchical/smoothness prior approach to nonparametric regression ... 187

Chapter 13: The linear regression model with general covariance matrix

13.1 Theoretical results for the general case ... 192
13.2 Heteroscedasticity of a known form ... 193
13.3 Heteroscedasticity of an unknown form: student t errors 195
13.4 Autocorrelated errors ... 198
List of exercises

Chapter 14: Latent variable models
14.1 Posterior simulation in the probit model .. 204
14.2 Parameter identification in the probit model 206
14.3 Probit model: application using Fair’s [1978] data 208
14.4 Posterior simulation in the panel probit model 210
14.5 Posterior simulation in the ordered probit, 1 211
14.6 Posterior simulation in the ordered probit, 2; Nandram and Chen [1996] ... 214
14.7 Posterior simulation in the multinomial probit 216
14.8 Posterior simulation in the tobit model ... 219
14.9 A tobit model with two-sided censoring: a female labor supply application ... 221
14.10 Posterior simulation in a treatment–effect model 223
14.11 Posterior simulation in a generalized tobit: a model of potential outcomes, 1 ... 225
14.12 A model of potential outcomes, 2 .. 229
14.13 Posterior simulation in an ordered-treatment, ordered-outcome model ... 232
14.14 Posterior simulation in the stochastic frontier model 236
14.15 Posterior simulation in the two-part [hurdle] model 240
14.16 Posterior simulation in the sample-selection model 243
14.17 Missing data, 1 ... 246
14.18 Missing data, 2 .. 247
14.19 Missing data, 3 .. 248

Chapter 15: Mixture models
Section 15.1: Some scale mixture of normals models
15.1 The student t-distribution as a scale mixture of normals 254
15.2 Student t errors in regression and binary choice models 256
15.3 Posterior simulation in a regression model with double exponential errors ... 258

Section 15.2: Other continuous and finite-mixture models
15.4 The negative binomial as a continuous mixture of the Poisson 260
15.5 Experiments with two-component normal mixtures 262
15.6 Using finite normal mixtures in a regression model 265
15.7 A normal mixture with covariates affecting the mixture assignment: response delays ... 266
15.8 Are my students randomly guessing? ... 270
15.9 A skewed regression model ... 276

Chapter 16: Bayesian model averaging and selection
Section 16.1: Bayesian model averaging
16.1 Basic g-prior results commonly used with BMA 282
16.2 Markov chain Monte Carlo model composition [MC3] 283
16.3 BMA: an application in economic growth 284

Section 16.2: Bayesian variable selection and marginal likelihood calculation
16.4 Stochastic search variable selection .. 287
*16.5 Nonparametric regression via variable selection: Smith and Kohn [1996] ... 289
16.6 Calculating the marginal likelihood with simulated output: Gelfand–Dey [1994] ... 293
16.7 Calculating the marginal likelihood with simulated output: Chib [1995] ... 293
16.8 Calculating marginal likelihoods with generated data 295

Chapter 17: Some stationary time series models
17.1 Using the AR(p) model to understand the properties of a series 298
17.2 The threshold autoregressive (TAR) model 300
17.3 Extensions of the basic TAR model, 1: other threshold triggers 304
17.4 Extensions of the basic TAR model, 2: switches in the error variance 307
17.5 Autoregressive conditional heteroscedasticity 310
17.6 Vector autoregressive models ... 312

Chapter 18: Some nonstationary time series models
18.1 The AR(1) model with a flat prior .. 320
18.2 Sims and Uhlig [1991] ... 321
List of exercises

18.3 Unit roots and Jeffreys’ prior ... 324
18.4 Berger and Yang [1994] ... 326
18.5 Kadane, Chan, and Wolfson [1996] .. 327
18.6 Cointegration ... 330
The past two decades have seen econometrics grow into a vast discipline. Many different branches of the subject now happily coexist with one another. These branches interweave econometric theory and empirical applications and bring econometric method to bear on a myriad of economic issues. Against this background, a guided treatment of the modern subject of econometrics in volumes of worked econometric exercises seemed a natural and rather challenging idea.

The present series, Econometric Exercises, was conceived in 1995 with this challenge in mind. Now, almost a decade later it has become an exciting reality with the publication of the first installment of a series of volumes of worked econometric exercises. How can these volumes work as a tool of learning that adds value to the many existing textbooks of econometrics? What readers do we have in mind as benefiting from this series? What format best suits the objective of helping these readers learn, practice, and teach econometrics? These questions we now address, starting with our overall goals for the series.

Econometric Exercises is published as an organized set of volumes. Each volume in the series provides a coherent sequence of exercises in a specific field or subfield of econometrics. Solved exercises are assembled together in a structured and logical pedagogical framework that seeks to develop the subject matter of the field from its foundations through to its empirical applications and advanced reaches. As the Schaum series has done so successfully for mathematics, the overall goal of Econometric Exercises is to develop the subject matter of econometrics through solved exercises, providing a coverage of the subject that begins at an introductory level and moves through to more advanced undergraduate- and graduate-level material.

Problem solving and worked exercises play a major role in every scientific subject. They are particularly important in a subject like econometrics in which there is a rapidly growing literature of statistical and mathematical technique and an ever-expanding core to the discipline. As students, instructors, and researchers, we all benefit by seeing carefully
Preface to the series

worked-out solutions to problems that develop the subject and illustrate its methods and workings. Regular exercises and problem sets consolidate learning and reveal applications of textbook material. Clearly laid out solutions, paradigm answers, and alternate routes to solution all develop problem-solving skills. Exercises train students in clear analytical thinking and help them in preparing for tests and exams. Teachers, as well as students, find solved exercises useful in their classroom preparation and in designing problem sets, tests, and examinations. Worked problems and illustrative empirical applications appeal to researchers and professional economists wanting to learn about specific econometric techniques. Our intention for the Econometric Exercises series is to appeal to this wide range of potential users.

Each volume of the series follows the same general template. Chapters begin with a short outline that emphasizes the main ideas and overviews the most relevant theorems and results. The introductions are followed by a sequential development of the material by solved examples and applications, and by computer exercises when appropriate. All problems are solved and they are graduated in difficulty with solution techniques evolving in a logical, sequential fashion. Problems are asterisked when they require more creative solutions or reach higher levels of technical difficulty. Each volume is self-contained. There is some commonality in material across volumes to reinforce learning and to make each volume accessible to students and others who are working largely, or even completely, on their own.

Content is structured so that solutions follow immediately after the exercise is posed. This makes the text more readable and avoids repetition of the statement of the exercise when it is being solved. More importantly, posing the right question at the right moment in the development of a subject helps to anticipate and address future learning issues that students face. Furthermore, the methods developed in a solution and the precision and insights of the answers are often more important than the questions being posed. In effect, the inner workings of a good solution frequently provide benefit beyond what is relevant to the specific exercise.

Exercise titles are listed at the start of each volume, following the table of contents, so that readers may see the overall structure of the book and its more detailed contents. This organization reveals the exercise progression, how the exercises relate to one another, and where the material is heading. It should also tantalize readers with the exciting prospect of advanced material and intriguing applications.

The series is intended for a readership that includes undergraduate students of econometrics with an introductory knowledge of statistics, first- and second-year graduate students of econometrics, as well as students and instructors from neighboring disciplines (such as statistics, psychology, or political science) with interests in econometric methods. The volumes generally increase in difficulty as the topics become more specialized.

The early volumes in the series (particularly those covering matrix algebra, statistics, econometric models, and empirical applications) provide a foundation to the study of econometrics. These volumes will be especially useful to students who are following the first-year econometrics course sequence in North American graduate schools and need to prepare for
Preface to the series

graduate comprehensive examinations in econometrics and to write an applied econometrics paper. The early volumes will equally be of value to advanced undergraduates studying econometrics in Europe, to advanced undergraduates and honors students in the Australasian system, and to masters and doctoral students in general. Subsequent volumes will be of interest to professional economists, applied workers, and econometricians who are working with techniques in those areas, as well as students who are taking an advanced course sequence in econometrics and statisticians with interests in those topics.

The *Econometric Exercises* series is intended to offer an independent learning-by-doing program in econometrics and it provides a useful reference source for anyone wanting to learn more about econometric methods and applications. The individual volumes can be used in classroom teaching and examining in a variety of ways. For instance, instructors can work through some of the problems in class to demonstrate methods as they are introduced; they can illustrate theoretical material with some of the solved examples; and they can show real data applications of the methods by drawing on some of the empirical examples. For examining purposes, instructors may draw freely from the solved exercises in test preparation. The systematic development of the subject in individual volumes will make the material easily accessible both for students in revision and for instructors in test preparation.

In using the volumes, students and instructors may work through the material sequentially as part of a complete learning program, or they may dip directly into material in which they are experiencing difficulty to learn from solved exercises and illustrations. To promote intensive study, an instructor might announce to a class in advance of a test that some questions in the test will be selected from a certain chapter of one of the volumes. This approach encourages students to work through most of the exercises in a particular chapter by way of test preparation, thereby reinforcing classroom instruction.

Further details and updated information about individual volumes can be obtained from the *Econometric Exercises* Web site:

http://us.cambridge.org/economics/ee/econometricexercises.htm

The Web site also contains the basic notation for the series, which can be downloaded along with the \LaTeX{} style files.

As series editors, we welcome comments, criticisms, suggestions, and, of course, corrections from all our readers on each of the volumes in the series as well as on the series itself. We bid you as much happy reading and problem solving as we have had in writing and preparing this series.

York, Tilburg, New Haven
June 2005

Karim M. Abadir
Jan R. Magnus
Peter C. B. Phillips
Preface

Bayesian econometrics has enjoyed an increasing popularity in many fields. This popularity has been evidenced through the recent publication of several textbooks at the advanced undergraduate and graduate levels, including those by Poirier (1995), Bauwens, Lubrano, and Richard (1999), Koop (2003), Lancaster (2004), and Geweke (2005). The purpose of the present volume is to provide a wide range of exercises and solutions suitable for students interested in Bayesian econometrics at the level of these textbooks.

The Bayesian researcher should know the basic ideas underlying Bayesian methodology (i.e., Bayesian theory) and the computational tools used in modern Bayesian econometrics (i.e., Bayesian computation). The Bayesian should also be able to put the theory and computational tools together in the context of substantive empirical problems. We have written this book with these three activities – theory, computation, and empirical modeling – in mind. We have tried to construct a wide range of exercises on all of these aspects. Loosely speaking, Chapters 1 through 9 focus on Bayesian theory, whereas Chapter 11 focuses primarily on recent developments in Bayesian computation. The remaining chapters focus on particular models (usually regression based). Inevitably, these chapters combine theory and computation in the context of particular models. Although we have tried to be reasonably complete in terms of covering the basic ideas of Bayesian theory and the computational tools most commonly used by the Bayesian, there is no way we can cover all the classes of models used in econometrics. Accordingly, we have selected a few popular classes of models (e.g., regression models with extensions and panel data models) to illustrate how the Bayesian paradigm works in practice. Particularly in Chapters 12 through 18 we have included substantive empirical exercises – some of them based closely on journal articles. We hope that the student who works through these chapters will have a good feeling for how serious Bayesian empirical work is done and will be well placed to write a Ph.D. dissertation or a journal article using Bayesian methods.
Preface

For the student with limited time, we highlight that a division in this book occurs between the largely theoretical material of Chapters 1 through 9 and the largely regression-based material in Chapters 10 through 18. A student taking a course on Bayesian statistical theory could focus on Chapters 1 through 9, whereas a student taking a Bayesian econometrics course (or interested solely in empirical work) could focus more on Chapters 10 through 18 (skimming through the more methodologically oriented material in the early chapters).

Although there have been some attempts to create specifically Bayesian software (e.g., BUGS, which is available at http://www.mrc-bsu.cam.ac.uk/bugs, or BACC, which is available at http://www2.cirano.qc.ca/~bacc), in our estimation, most Bayesians still prefer to create their own programs using software such as Matlab, OX, or GAUSS. We have used Matlab to create answers to the empirical problems in this book. Our Matlab code is provided on the Web site associated with this book:

http://www.econ.iastate.edu/faculty/tobias/Bayesian_exercises.html

A few notational conventions are applied throughout the book, and it is worthwhile to review some of these prior to diving into the exercises. In regression-based problems, which constitute a majority of the exercises in the later chapters, lowercase letters such as y and x_i are reserved to denote scalar or vector quantities whereas capitals such as X or X_j are used to denote matrices. In cases in which the distinction between vectors and scalars is critical, this will be made clear within the exercise. In the regression-based problems, y is assumed to denote the $n \times 1$ vector of stacked responses for the dependent variable, y_i the ith element of that vector, x_i a k vector of covariate data, and X the $n \times k$ matrix obtained from stacking the x_i over i. Latent variables, which are often utilized in the computational chapters of the book, are typically designated with a “∗” superscript, such as $y_i^∗$. In Chapters 1 through 9, many exercises are presented that are not directly related to linear regression models or models that can be viewed as linear on suitably defined latent data. In these exercises, the distinction between random variables and realizations of those variables is sometimes important. In such cases, we strive to use capital letters to denote random variables, which are unknown ex ante, and lowercase letters to denote their realizations, which are known ex post. So, in the context of discussing a posterior distribution (which conditions on the data), we will use \overline{y}, but if we are interested in discussing the sampling properties of the sample mean, \overline{Y} would be the appropriate notation. Finally, “×” is used to denote multiplication in multiline derivations, and specific parameterizations of various densities are provided in the Appendix associated with this book.

On the issue of parameterization, the reader who is somewhat familiar with the Bayesian literature may realize that researchers often employ different parameterizations for the same model, with no particular choice being “correct” or “ideal.” A leading example is the linear regression model, in which the researcher can choose to parameterize this model in terms of the error variance or the error precision (the reciprocal of the variance). In this book, we try and remain consistent in terms of parameterization within individual chapters, though some departures from this trend do exist, particularly in Chapters 11 and 16. These differences arise from our own individual tastes and styles toward approaching these models, and they
are superficial rather than substantive. In our view it is quite valuable to expose the student to the use of different parameterizations, since this is the reality that he or she will face when exploring the Bayesian literature in more detail. In all cases, the parameterization employed is clearly delineated within each exercise.

We would like to thank the editors of the *Econometrics Exercises* series – Karim Abadir, Jan Magnus, and Peter Phillips – for their helpful comments and support during the planning and writing of this book. Hoa Jia, Babatunde Abidoye, and Jingtao Wu deserve special recognition for reviewing numerous exercises and helping to reduce the number of typographical errors. The list of other colleagues and students who have helped us – through designing, solving, and pointing out errors in our problems or solutions – is too long to enumerate here. We would, however, like to thank our students at the University of California, Irvine; Leicester University; University of Toronto; and the Institute for Advanced Studies and CIDE (Italy) for their participation, wise insights, and enthusiasm.