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The subjective interpretation of probability

Reverend Thomas Bayes (born circa 1702; died 1761) was the oldest son of Reverend
Joshua Bayes, who was one of the first ordained nonconformist ministers in England. Rel-
atively little is known about the personal life of Thomas Bayes. Although he was elected a
Fellow of the Royal Society in 1742, his only known mathematical works are two articles
published posthumously by his friend Richard Price in 1763. The first dealt with the diver-
gence of the Stirling series, and the second, “An Essay Toward Solving a Problem in the
Doctrine of Chances,” is the basis of the paradigm of statistics named for him. His ideas
appear to have been independently developed by James Bernoulli in 1713, also published
posthumously, and later popularized independently by Pierre Laplace in 1774. In their com-
prehensive treatise, Bernardo and Smith (1994, p. 4) offer the following summarization of
Bayesian statistics:

Bayesian Statistics offers a rationalist theory of personalistic beliefs in contexts
of uncertainty, with the central aim of characterizing how an individual should act
in order to avoid certain kinds of undesirable behavioral inconsistencies. The the-
ory establishes that expected utility maximization provides the basis for rational
decision making and that Bayes’ Theorem provides the key to the ways in which
beliefs should fit together in the light of changing evidence. The goal, in effect, is
to establish rules and procedures for individuals concerned with disciplined uncer-
tainty accounting. The theory is not descriptive, in the sense of claiming to model
actual behavior. Rather, it is prescriptive, in the sense of saying “if you wish to
avoid the possibility of these undesirable consequences you must act in the follow-
ing way.”

Bayesian econometrics consists of the tools of Bayesian statistics applicable to the mod-
els and phenomena of interest to economists. There have been numerous axiomatic for-
mulations leading to the central unifying Bayesian prescription of maximizing subjective

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-85571-6 - Bayesian Econometric Methods
Gary Koop, Dale J. Poirier and Justin L. Tobias
Excerpt
More information

http://www.cambridge.org/0521855713
http://www.cambridge.org
http://www.cambridge.org


2 1 The subjective interpretation of probability

utility as the guiding principle of Bayesian statistical analysis. Bernardo and Smith (1994,
Chapter 2) is a valuable segue into this vast literature. Deep issues are involved regarding
meaningful separation of probability and utility assessments, and we do not address these
here.

Non-Bayesians, who we hereafter refer to as frequentists, argue that situations not admit-
ting repetition under essentially identical conditions are not within the realm of statistical
enquiry, and hence “probability” should not be used in such situations. Frequentists define
the probability of an event as its long-run relative frequency. This frequentist interpretation
cannot be applied to (i) unique, once-and-for-all type of phenomenon, (ii) hypotheses, or
(iii) uncertain past events. Furthermore, this definition is nonoperational since only a finite
number of trials can ever be conducted. In contrast, the desire to expand the set of relevant
events over which the concept of probability can be applied, and the willingness to entertain
formal introduction of “nonobjective” information into the analysis, led to the subjective
interpretation of probability.

Definition 1.1 (Subjective interpretation of probability) Let κ denote the body of
knowledge, experience, or information that an individual has accumulated about the sit-
uation of concern, and let A denote an uncertain event (not necessarily repetitive). The
probability of A afforded by κ is the “degree of belief” in A held by an individual in the
face of κ.

Since at least the time of Ramsey (1926), such degrees of belief have been operational-
ized in terms of agreed upon reference lotteries. Suppose you seek your degree of belief,
denoted p = P (A), that an event A occurs. Consider the following two options.

1. Receiving a small reward $r if A occurs, and receiving $0 if A does not occur.
2. Engaging in a lottery in which you win $r with probability p, and receiving $0 with

probability 1 − p.

If you are indifferent between these two choices, then your degree of belief in A occur-
ring is p. Requiring the reward to be “small” is to avoid the problem of introducing utility
into the analysis; that is, implicitly assuming utility is linear in money for small gambles.

Bruno de Finetti considered the interesting situation in which an individual is asked to
quote betting odds (ratios of probabilities) on a set of uncertain events and accept any wa-
gers others may decide to make about these events. According to de Finetti’s coherence
principle the individual should never assign “probabilities” so that someone else can select
stakes that guarantee a sure loss (Dutch book) for the individual whatever the eventual out-
come. A sure loss amounts to the “undesirable consequences” contained in the earlier quote
of Bernardo and Smith. This simple principle implies the axioms of probability discussed
in Abadir, Heijmans, and Magnus (2006, Chapter 1) except that the additivity of prob-
ability of intersections for disjoint events is required to hold only for finite intersections.
Nonetheless, for purposes of convenience, we consider only countably additive probability
in this volume.
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1 The subjective interpretation of probability 3

De Finetti’s Dutch book arguments also lead to the standard rule for conditional probabil-
ity. Consider two events A and B. By using the factorization rule for conditional probability
[Abadir et al. (2006, p. 5)],

P (A and B) = P (A)P (B|A) = P (B)P (A|B),

the simplest form of Bayes’ theorem follows immediately:

P (B|A) =
P (B)P (A|B)

P (A)
.

In words, we are interested in the event B to which we assign the prior probability P (B) for
its occurrence. We observe the occurrence of the event A. The probability of B occurring
given that A has occurred is the posterior probability P (B|A). More generally, we have
the following result.

Theorem 1.1 (Bayes’ theorem for events) Consider a probability space [S, Ã, P (·)] and
a collection Bn ∈ Ã (n = 1, 2, . . . N) of mutually disjoint events such that P (Bn) >

0 (n = 1, 2, . . . , N) and B1 ∪ B2 ∪ · · · ∪ BN = S. Then

P (Bn|A) =
P (A|Bn)P (Bn)∑N
j=1 P (A|Bj)P (Bj)

(n = 1, 2, . . . , N) (1.1)

for every A ∈ Ã such that P (A) > 0.

Proof: The proof follows directly upon noting that the denominator in (1.1) is P (A).

An important philosophical topic is whether the conditionalization in Bayes theorem
warrants an unquestioned position as the model of learning in the face of knowledge of the
event A. Conditional probability P (B|A) refers to ex ante beliefs on events not yet decided.
Ex post experience of an event can sometimes have a striking influence on the probability
assessor (e.g., experiencing unemployment, stock market crashes, etc.), and the experience
can bring with it more information than originally anticipated in the event. Nonetheless, we
adopt such conditionalization as a basic principle.

The subjective interpretation reflects an individual’s personal assessment of the situation.
According to the subjective interpretation, probability is a property of an individual’s per-
ception of reality, whereas according to classical and frequency interpretations, probability
is a property of reality itself. For the subjectivist there are no “true unknown probabilities”
in the world out there to be discovered. Instead, “probability” is in the eye of the beholder.

Bruno de Finetti assigned a fundamental role in Bayesian analysis to the concept of
exchangeability, defined as follows.

Definition 1.2 A finite sequence Yt (t = 1, 2, . . . , T ) of events (or random variables)
is exchangeable iff the joint probability of the sequence, or any subsequence, is invariant
under permutations of the subscripts, that is,

P (y1, y2, . . . , yT ) = P (yπ(1), yπ(2), . . . , yπ(T )), (1.2)
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4 1 The subjective interpretation of probability

where π(t)(t = 1, 2, . . . , T ) is a permutation of the elements in {1, 2, . . . , T}. An infinite
sequence is exchangeable iff any finite subsequence is exchangeable.

Exchangeability provides an operational meaning to the weakest possible notion of a
sequence of “similar” random quantities. It is “operational” because it only requires proba-
bility assignments of observable quantities, although admittedly this becomes problematic
in the case of infinite exchangeability. For example, a sequence of Bernoulli trials is ex-
changeable iff the probability assigned to particular sequences does not depend on the or-
der of “successes” (S) and “failures” (F ). If the trials are exchangeable, then the sequences
FSS, SFS, and SSF are assigned the same probability.

Exchangeability involves recognizing symmetry in beliefs concerning only observables,
and presumably this is something about which a researcher may have intuition. Ironically,
subjectivists emphasize observables (data) and objectivists focus on unobservables (param-
eters). Fortunately, Bruno de Finetti provided a subjectivist solution to this perplexing state
of affairs. De Finetti’s representation theorem and its generalizations are interesting because
they provide conditions under which exchangeability gives rise to an isomorphic world in
which we have iid observations conditional on a mathematical construct, namely, a param-
eter. These theorems provide an interpretation of parameters that differs substantively from
the interpretation of an objectivist.

As in the case of iid sequences, the individual elements in an exchangeable sequence
are identically distributed, but they are not necessarily independent, and this has important
predictive implications for learning from experience. The importance of the concept of
exchangeability is illustrated in the following theorem.

Theorem 1.2 (de Finetti’s representation theorem) Let Yt (t = 1, 2, . . .) be an infinite
sequence of Bernoulli random variables indicating the occurrence (1) or nonoccurrence (0)
of some event of interest. For any finite sequence Yt (t = 1, 2, . . . , T ), define the average
number of occurrences

Y T =
1
T

T∑
t=1

Yt. (1.3)

Let h(y1, y2, . . . , yT ) = Pr(Y1 = y1, Y2 = y2, . . . , YT = yT ) denote a probability mass
function (p.m.f.) reflecting exchangeable beliefs for an arbitrarily long finite sequence
Yt (t = 1, 2, . . . , T ), and let H(y) = Pr(Y ≤ y) denote its associated cumulative dis-
tribution function (c.d.f.). Then h(·) has the representation

h(y1, y2, . . . , yT ) =
∫ 1

0
L(θ)dF (θ), (1.4)

where

L(θ) =
T∏

t=1

θyt(1 − θ)(1−yt), (1.5)

F (θ) = lim
T→∞

PH(Y T ≤ θ), (1.6)

and PH(·) denotes probability with respect to the c.d.f. H(·) corresponding to p.m.f. (1.4).
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1 The subjective interpretation of probability 5

Proof: See de Finetti (1937) or the simpler exposition of Heath and Sudderth (1976).

Theorem 1.1 implies that it is as if, given θ, Yt (t = 1, 2, . . . , T ) are iid Bernoulli trials
where the probability of a success is θ, and the “parameter” θ is assigned a probability
distribution with c.d.f. F (·) that can be interpreted as belief about the long-run relative
frequency of Y T ≤ θ as T → ∞. From de Finetti’s standpoint, both the quantity θ and
the notion of independence are “mathematical fictions” implicit in the researcher’s sub-
jective assessment of arbitrarily long observable sequences of successes and failures. The
parameter θ is of interest primarily because it constitutes a limiting form of predictive infer-
ence about the observable Y T via (1.6). The mathematical construct θ may nonetheless be
useful. However, Theorem 1.2 implies that the subjective probability distribution need not
apply to the “fictitious θ” but only to the observable exchangeable sequence of successes
and failures. When the c.d.f. is absolutely continuous, so that f(θ) = ∂F (θ)/∂θ exists,
then (1.4) becomes

h(y1, y2, . . . , yT ) =
∫ 1

0

T∏
t=1

θ(yt)(1 − θ)(1−yt)f(θ)dθ. (1.7)

It is clear from (1.4) and (1.7) that exchangeable beliefs assign probabilities acting as if the
Yt’s are iid Bernoulli random variables given θ, and then average over values of θ using the
weight f(θ) to obtain a marginal density for the Yt’s. Let ST = TY T be the number of

successes in T trials. Since there are
(

T
r

)
ways in which to obtain ST = r successes in T

trials, it follows immediately from (1.4) and (1.5) that

Pr(ST = r) =
(

T

r

) ∫ 1

0
θr(1 − θ)T−rdF (θ) (r = 0, 1, . . . , T ), (1.8)

where

F (θ) = lim
T→∞

Pr(T−1ST ≤ θ). (1.9)

Thus, given θ, it follows from (1.8) that exchangeable beliefs assign probabilities acting
as if ST has a binomial distribution given θ, and then average over values of θ using the
weight f(θ) = ∂F (θ)/∂θ. Bayes and Laplace suggest choosing the “mixing” distribution
F (θ) for θ to be uniform over [0, 1], in which case (1.8) reduces to

Pr(ST = r) = (T + 1)−1, r = 0, 1, . . . , T. (1.10)

In words, (1.10) describes beliefs that in T trials, any number r of successes are equally
likely. In the degenerate case in which the distribution of θ assigns probability one to
some value θ0, then de Finetti’s theorem implies that ST follows the standard binomial
distribution

Pr(ST = r) =
(

T

r

)
θr
0(1 − θ0)T−r, (1.11)

and (1.9) implies

lim
T→∞

Y T = θ0 (1.12)
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6 1 The subjective interpretation of probability

with “probability one.” This last result, as a special case of de Finetti’s Theorem, is equiv-
alent to the strong law of large numbers.

De Finetti’s representation theorem has been generalized by seeking more stringent
forms of “symmetry” than simple exchangeability, in the process rationalizing sampling
models other than the binomial [see Bernardo and Smith (1994, Chapter 4)]. Although
these theorems do not hold exactly for infinite sequences, they hold approximately for suf-
ficiently large finite sequences.

The pragmatic value of de Finetti’s theorem depends on whether it is easier to assess the
left-hand side of (1.8), which involves only observable quantities, or instead, the integrand
on the right-hand side of (1.8), which involves two distributions and the mathematical fic-
tion θ. Most statisticians think in terms of the right-hand side. Frequentists implicitly do
so with a degenerate distribution for θ that in effect treats θ as a constant, and Bayesians
do so with a nondegenerate “prior” distribution for θ. What is important to note here, how-
ever, is the isomorphism de Finetti’s theorem suggests between two worlds, one involving
only observables and the other involving the parameter θ. De Finetti put parameters in their
proper perspective: (i) They are mathematical constructs that provide a convenient index
for a probability distribution, and (ii) they induce conditional independence for a sequence
of observables.

Exercise 1.1 (Let’s make a deal) Consider the television game show “Let’s Make a Deal”
in which host Monty Hall asks contestants to choose the prize behind one of three curtains.
Behind one curtain lies the grand prize; the other two curtains conceal only relatively small
gifts. Assume Monty knows what is behind every curtain. Once the contestant has made a
choice, Monty Hall reveals what is behind one of the two curtains that were not chosen.
Having been shown one of the lesser prizes, the contestant is offered a chance to switch
curtains. Should the contestant switch?

Solution
Let C denote which curtain hides the grand prize. Let Ĉ denote the curtain the contes-
tant chooses first, and let M denote the curtain Monty shows the contestant. Assume
Pr(C = i) = 1/3, i = 1, 2, 3, Pr(Ĉ = k|C) = 1/3, k = 1, 2, 3, and that C and Ĉ

are independent. Without loss of generality, suppose C = 1 and M = 2. Then use Bayes’
theorem for events to compute the numerator and denominator of the following ratio:

Pr(C = 3|M = 2, Ĉ = 1)
Pr(C = 1|M = 2, Ĉ = 1)

=

Pr(M=2,Ĉ=1|C=3)Pr(C=3)

Pr(M=2,Ĉ=1)

Pr(M=2,Ĉ=1|C=1)Pr(C=1)

Pr(M=2,Ĉ=1)

(1.13)

=
Pr(M = 2, Ĉ = 1|C = 3)
Pr(M = 2, Ĉ = 1|C = 1)

=
Pr(M = 2|Ĉ = 1, C = 3)Pr(Ĉ = 1|C = 3)
Pr(M = 2|Ĉ = 1, C = 1)Pr(Ĉ = 1|C = 1)

=
Pr(M = 2|Ĉ = 1, C = 3)
Pr(M = 2|Ĉ = 1, C = 1)

.
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1 The subjective interpretation of probability 7

The numerator of the last line of (1.13) is one because Monty has no choice but to choose
M = 2 when Ĉ = 1 and C = 3. The denominator of (1.13), however, is ambiguous be-
cause when Ĉ = 1 and C = 1, Monty can choose either M = 2 or M = 3. The problem
formulation does not contain information on Monty’s choice procedure in this case. But
since this probability must be less than or equal to one, ratio (1.13) can never be less than
one. Unless Pr(M = 2|Ĉ = 1, C = 1) = 1, the contestant is better off switching curtains.
If Pr(M = 2|Ĉ = 1, C = 1) = Pr(M = 3|Ĉ = 1, C = 1) = 1/2, then the contestant
doubles the probability of winning the grand prize by switching.

Exercise 1.2 (Making Dutch book) Consider a horse race involving N horses. Sup-
pose a bettor’s beliefs are such that he believes the probability of horse n winning is pn,
where p1 + p2 + · · · + pN < 1. Show how to make Dutch book with such an individual.

Solution
Consider a bet with this person of pn dollars that pays one dollar if horse n wins, and place
such a bet on each of the N horses. Then you are guaranteed winning one dollar (since one
of the horses has to win) and earning a profit of 1 − (p1 + p2 + · · · + pN ) > 0.

Exercise 1.3 (Independence and exchangeability) Suppose Y = [Y1 Y2 · · · YT ]′ ∼
N(0T , Σ), where Σ = (1 − α)IT + αιT ι′T is positive definite for some scalar α and ι is a
T × 1 vector with each element equal to unity. Let π(t) (t = 1, 2, . . . , T ) be a permutation
of {1, 2, . . . , T} and suppose [Yπ(1), Yπ(2), . . . , Yπ(T )] = AY, where A is a T ×T selection
matrix such that, for t = 1, 2, . . . , T, row t in A consists of all zeros except column π(t),
which is unity. Show that these beliefs are exchangeable.

Solution
Note that AA′ = IT and AιT = ιT . Then, AY ∼ N(0T , Ω), where

Ω = AΣA′

= A[(1 − α)It + αιT ι′T ]A′

= (1 − α)AA′ + αAιT ι′T A′

= (1 − α)IT + αιT ι′T
= Σ.

Hence, beliefs regarding Yt(t = 1, 2, . . . , T ) are exchangeable. Despite this exchangeabil-
ity, it is interesting to note that if α �= 0, Yt (t = 1, 2, . . . , T ) are not independent.

Exercise 1.4 (Predicted probability of success of a Bernoulli random variable) Supp-
ose a researcher makes a coherent probability assignment to an infinite sequence
Yt(t = 1, 2, 3, . . .) of exchangeable Bernoulli random variables. Given an observed se-
quence of T trials with r successes, find the probability that the next outcome, YT+1, is
yT+1.
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8 1 The subjective interpretation of probability

Solution
Applying the definition of conditional probability and then Theorem 1.2 to both the numer-
ator and denominator yields

Pr(YT+1 = yT+1|TY T = r) =
Pr(TY T = r, YT+1 = yT+1)

Pr(TY T = r)
(1.14)

=

∫ 1
0 θ(r+yT +1)(1 − θ)(T+1−r−yT +1)p(θ)dθ∫ 1

0 θr(1 − θ)(T−r)p(θ)dθ

=

∫ 1
0 θ(yT +1)(1 − θ)(1−YT +1)p(θ)L(θ)dθ∫ 1

0 L(θ)p(θ)dθ

=
∫ 1

0
θ(yT +1)(1 − θ)(1−yT +1)p(θ|y)dθ,

where

p(θ|y) =
p(θ)L(θ)

p(y)
. (1.15)

Therefore Pr(YT+1 = yT+1|TY T = r) is simply

E(θ|y) if yT+1 = 1,

or

1 − E(θ|y) if yT+1 = 0.

The simplicity of this exercise hides its importance because it demonstrates most of the es-
sential operations that characterize the Bayesian approach to statistics. First, the existence
of the density p(θ) is a result of Theorem 1.2, not an assumption. Second, the updating of
prior beliefs captured in (1.15) amounts to nothing more than Bayes’ theorem. Third, al-
though Yt (t = 1, 2, . . . , T ) are independent conditional on θ, unconditional on θ they are
dependent. Finally, the parameter θ is merely a mathematical entity indexing the integration
in (1.14). Its “real-world existence” is a question only of metaphysical importance.

Exercise 1.5 (Independence and conditional independence) Consider three events Ai (i =
1, 2, 3), where Pr(Ai) = pi, i = 1, 2, 3. Show that the following statements are totally un-
related: (a) A1 and A2 are independent and (b) A1 and A2 are conditionally independent
given A3.

Solution
There are 23 = 8 possible three-element strings that can occur when considering Ai (i =
1, 2, 3) and their complements Ac

i (i = 1, 2, 3). This leaves assessment of 7 = 8 − 1
probabilities since the eighth is determined by the adding-up condition. These can be as-
sessed in terms of the following probabilities: Pr(A1 ∩ A2) = q12, Pr(A1 ∩ A3) = q13,
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1 The subjective interpretation of probability 9

Pr(A2∩A3) = q23, and Pr(A1∩A2∩A3) = s. Independence of A1 and A2 places a restric-
tion on Pr(A1∩A2), namely q12 = p1p2. Conditional independence places a restriction on
the remaining probabilities q13, q23, p3, and s. To see this note Pr(A1 ∩ A2|A3) = s/p3

by simply expressing the conditional as the joint divided by the marginal, and conditional
independence implies Pr(A1 ∩ A2|A3) = Pr(A1|A3)Pr(A2|A3) = (q13/p3)(q23/p3).
Putting these equalities together implies s = q13q23/p3. Note that the restrictions implied
by independence and conditional independence share no common probabilities.
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2

Bayesian inference

In this chapter we extend Chapter 1 to cover the case of random variables. By Bayesian
inference we mean the updating of prior beliefs into posterior beliefs conditional on ob-
served data. This chapter covers a variety of standard sampling situations in which prior
beliefs are sufficiently regular that the updating can proceed in a fairly mechanical fashion.
Details of point estimation, interval estimation, hypothesis testing, and prediction are cov-
ered in subsequent chapters. We remind the reader that the definitions of many common
distributions are provided in the Appendix to this book. Further details on the underlying
probability theory are available in Chapters 1 and 2 of Poirier (1995).

One of the appealing things about Bayesian analysis is that it requires only a few gen-
eral principles that are applied over and over again in different settings. Bayesians begin
by writing down a joint distribution of all quantities under consideration (except known
constants). Quantities to become known under sampling are denoted by the T -dimensional
vector y, and remaining unknown quantities by the K-dimensional vector θ ∈ Θ ⊆ RK .
Unless noted otherwise, we treat θ as a continuous random variable. Working in terms of
densities, consider

p(y, θ) = p(θ)p(y|θ) = p(y)p(θ|y), (2.1)

where p(θ) is the prior density and p(θ|y) is the posterior density. Viewing p(y|θ) as a
function of θ for known y, any function proportional to it is referred to as a likelihood
function. We will denote the likelihood function as L(θ). Unless noted otherwise, we will
work with L(θ) = p(y|θ) and thus include the integrating constant for y|θ in our description
of the likelihood. We also note that

p(y) =
∫

Θ
p(θ)L(θ)dθ (2.2)

is the marginal density of the observed data (also known as the marginal likelihood).
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