Contents

Acknowledgments xi

Introduction 1

Part I Conceptual tools and methods

1 The basics of ichnology 5

1.1 Basic concepts 5

1.2 Characteristics of trace fossils 8

1.2.1 Trace fossils represent evidence of behavior 8

1.2.2 The same organism may produce more than one ichnotaxon 9

1.2.3 The same ichnotaxon may be produced by more than one organism 10

1.2.4 Multiple architects may produce a single structure 10

1.2.5 Producers are commonly soft-bodied animals that are rarely preserved 11

1.2.6 Trace fossils are commonly preserved in rock units that are otherwise unfossiliferous 12

1.2.7 The same biogenic structure may be differentially preserved in various substrates 12

1.2.8 Trace fossils commonly have long stratigraphic ranges 13

1.2.9 Trace fossils commonly have narrow environmental ranges 14

1.2.10 Trace fossils are rarely transported 14

1.3 Preservation of trace fossils 14

1.3.1 Stratigraphic classifications 14

1.3.2 Physiochemical processes of preservation and alteration 17

1.4 Ethology of trace fossils 17

1.4.1 Resting traces or cubichnia 18

1.4.2 Locomotion traces or repichnia 20

1.4.3 Death traces or morichnia 20

1.4.4 Grazing traces or pascichnia 20

1.4.5 Feeding traces or fodinichnia 20

1.4.6 Dwelling traces or domicichnia 21

1.4.7 Traps and farming traces or agrichnia 21

1.4.8 Escape traces or fugichnia 22

1.4.9 Equilibrium traces or equilibrichnia 22

1.4.10 Predation traces or praedichnia 23

1.4.11 Nesting traces or calichnia 24

1.4.12 Pupation chambers or pupichnia 24

1.4.13 Fixation/anchoring traces or fixichnia 24

1.4.14 Bioclaustration structures or impedichnia 24

1.4.15 Discussion: complex traces and extended organisms 24

2 Taxonomy of trace fossils 25

2.1 Approach and philosophy 25

2.2 Some problems and practical guidelines 26

2.3 Ichnotaxobases 27

2.3.1 General form 28

2.3.2 Wall and lining 28

2.3.3 Branching 29

2.3.4 Fill 30

2.3.5 Spreite 31

2.4 Compound and composite trace fossils 31

2.4.1 Compound trace fossils 31

2.4.2 Composite trace fossils 33

2.5 Hierarchies in ichnotaxonomy 34

2.6 Vertebrate ichnotaxonomy 35

2.7 The uncertainty principle in ichnotaxonomy 36

2.8 Classification of trace fossils in outcrops and cores 36

3 Paleobiology of trace fossils 38

3.1 Modes of life 38

3.1.1 Feeding strategy 38

3.1.2 Position with respect to the substrate–water interface 43

3.1.3 Level of motility 43
3.2 Modes of interaction with the substrate 44
3.3 Locomotion and burrowing mechanisms 46
 3.3.1 Multiple modes of locomotion: the empiricist approach 46
 3.3.2 Burrowing pre-adaptations: the morpho-structural approach 55
 3.3.3 In search of a universal mechanism: the rationalist approach 56
3.4 Movement ecology 57

4 The ichnofacies model 58
 4.1 The ichnofacies concept 58
 4.2 Softground marine ichnofacies 59
 4.2.1 Psilonichnus ichnofacies 59
 4.2.2 Skolithos ichnofacies 60
 4.2.3 Cruziana ichnofacies 62
 4.2.4 Zoophycos ichnofacies 64
 4.2.5 Nereites ichnofacies 65
 4.3 Substrate-controlled ichnofacies 67
 4.3.1 Glossifungites ichnofacies 67
 4.3.2 Trypanites ichnofacies 69
 4.3.3 Gnathichnus ichnofacies 71
 4.3.4 Teredinichnus ichnofacies 71
 4.4 Invertebrate continental ichnofacies 73
 4.4.1 Scoyenia ichnofacies 73
 4.4.2 Merma ichnofacies 75
 4.4.3 Coprinus ichnofacies 76
 4.4.4 Termwichnus ichnofacies 77
 4.4.5 Celliforma ichnofacies 77
 4.4.6 Octopodichnus-Entrodichnus ichnofacies 78
 4.5 Vertebrate ichnofacies 79
 4.5.1 Chelichnus ichnofacies 80
 4.5.2 Grallator ichnofacies 80
 4.5.3 Brontopodus ichnofacies 80
 4.5.4 Batrachichnus ichnofacies 80
 4.5.5 Characichichnos ichnofacies 80
 4.6 Pitfalls and confusions in ichnofacies analysis 83
 5 The ichnofabric approach 83
 5.1 Tiering 83
 5.2 Ichnofabrics: concepts and methods 84
 5.2.1 Quantifying bioturbation and illustrating ichnofabrics 84
 5.2.2 Taphonomy of ichnofabrics 85
 5.3 Types of ichnofabrics 86
 5.4 The ichnoguild concept 87
 5.5 Paleosol ichnofabrics 90
 5.6 The role of bioturbation, bioerosion, and biodiagenesis 91
 5.7 Bioturbation-enhanced permeability and reservoir characterization 91
 5.8 Critical evaluation: ichnofabrics versus ichnofacies or ichnofabrics and ichnofacies? 96

Part II Spatial trends
6 Trace fossils and paleoecology 99
 6.1 Response to environmental parameters 99
Contents

9.2 Deep-marine turbidite systems
9.2.1 Fine-grained turbidite systems
9.2.2 Coarse-grained turbidite systems
9.3 Hyperpycnal systems
9.4 Basin plains
10 Ichnology of continental environments
10.1 Alluvial fans
10.2 Rivers
10.2.1 Channels
10.2.2 Overbank
10.3 Lakes
10.3.1 Closed lakes
10.3.2 Open lakes
10.4 Deserts
10.5 Paleosols
11 Ichnology of carbonate environments, rocky shorelines, and volcanic terrains
11.1 Carbonate systems
11.1.1 Shallow-marine tropical carbonates
11.1.2 Reefs
11.1.3 Shelf and deep-sea chalk
11.1.4 Carbonate turbidites
11.2 Rocky shorelines
11.3 Volcanic terranes
11.4 Carbonate sequence stratigraphy
12 Trace fossils in sequence stratigraphy
12.1 Recognition of discontinuity surfaces
12.2 Erosional discontinuities
12.2.1 Regressive surfaces of marine erosion
12.2.2 Lowstand surfaces of erosion
12.2.3 Transgressive surfaces of erosion
12.2.4 Co-planar surfaces of lowstand erosion and transgressive erosion
12.3 Non-erosional discontinuities
12.4 Characterization of parasequences
12.4.1 Wave-dominated parasequences
12.4.2 Tide-dominated parasequences
12.4.3 Deltaic parasequences
12.5 Delineation of parasequence sets and systems tracts
12.5.1 Progradational patterns
12.5.2 Retrogradational patterns
12.6 Carbonate sequence stratigraphy
12.7 Continental sequence stratigraphy
12.7.1 Lake basins
12.7.2 Alluvial plains
12.8 Evaluation of the models
13 Trace fossils in biostratigraphy
13.1 The Proterozoic–Cambrian boundary
13.2 Cruziana stratigraphy
13.3 Arthropod stratigraphy
13.4 Other invertebrate ichnotaxa
13.5 Tetrapod trackways
14 Trace fossils in evolutionary paleoecology
14.1 Evolutionary events
14.1.1 The early record of complex life
14.1.2 Ediacaran ecosystems
14.1.3 The Cambrian explosion
14.1.4 The Ordovician radiation
14.1.5 The origin of dinosaurs
14.1.6 Mass extinctions
14.2 Animal–substrate interactions and ecosystems through time
14.2.1 Colonization of shallow-marine environments
14.2.2 Colonization of the deep sea
14.2.3 Colonization of hard substrates
14.2.4 Colonization of tidal flats
14.2.5 Colonization of brackish-water environments
14.2.6 Colonization of freshwater and terrestrial environments
14.2.7 Arthropod–plant interactions through the Phanerozoic
15 Ichnology in paleoanthropology and archaeology
15.1 Applications in paleoanthropology
15.1.1 The Pliocene record
15.1.2 The Early Pleistocene record
15.1.3 The Middle Pleistocene record
15.1.4 The Late Pleistocene record
15.1.5 The Holocene record
15.2 Applications in archaeology
15.2.1 Biogenic structures in natural and artificial substrates
15.2.2 Ichnological hierophanies
References
Index