In 1974, the British government admitted that its WWII secret intelligence organization had read Germany’s ciphers on a massive scale. The intelligence from these decrypts influenced on the Atlantic, the Eastern Front and Normandy. Why did the Germans never realize the Allies had so thoroughly penetrated their communications? As German intelligence experts conducted numerous internal investigations that all certified their ciphers’ security, the Allies continued to break more ciphers and to plug their own communication leaks. How were the Allies able to so thoroughly exploit Germany’s secret messages? How did they keep their tremendous success a secret? What flaws in Germany’s organization allowed this counterintelligence failure and how can today’s organizations learn to avoid similar disasters?

This book, the first comparative study of WWII sigint (signals intelligence), analyzes the characteristics that allowed the Allies sigint success and that fostered the German blindness to Enigma’s compromise.

R. A. Ratcliff currently lives and consults in Silicon Valley. She has lectured on cryptologic history at the National Security Agency’s intelligence school and taught history at the University of San Francisco and University of California at Berkeley. She is the author of articles for Intelligence and National Security and Cryptologia.
For Chris,
Nick, and Alec

who slowed progress on the book

and have made life marvelous
CONTENTS

List of Illustrations .. ix
Glossary of Terms Used ... xi
Acknowledgments ... xv

Introduction: The Traitor in Our Midst 1

1 Enigma: The Development and Use of a New Technology 11

2 Early Triumph: German Intelligence Successes 33

3 Of No Mutual Assistance: Compartmentalization and Competition in German Signals Intelligence 56

4 The Work of Station X: Centralizing Allied Cryptology at Bletchley Park 72

5 Protecting Boniface: Allied Security, Disguise, and Dissemination of Ultra 106

6 The Illusion of Security: The German Explanations for Allied Successes 127

7 A Long-Standing Anxiety: Allied Communications Security 159

8 Determined Answers: Structural Problems in German Signal Intelligence 180

© Cambridge University Press www.cambridge.org
Contents

9 Enter the Machines: The Role of Science and Machines in the Cryptologic War 198
Conclusion: Recognizing the End of Security 214
Notes 237
Bibliography 287
Index 305
LIST OF ILLUSTRATIONS

CHARTS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Enigma Wiring Diagram</td>
<td>15</td>
</tr>
<tr>
<td>German Sigint Organization</td>
<td>38</td>
</tr>
<tr>
<td>British Sigint Organization</td>
<td>73</td>
</tr>
</tbody>
</table>

PHOTOGRAPHS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enigma machine rotors (three-rotor machine)</td>
<td>14</td>
</tr>
<tr>
<td>The American M-209</td>
<td>49</td>
</tr>
<tr>
<td>SIS (the U.S. Army's Signals Intelligence Service) in 1937</td>
<td>78</td>
</tr>
<tr>
<td>The Manor House at Bletchley Park</td>
<td>85</td>
</tr>
<tr>
<td>The U.S. Navy four-rotor Bombe</td>
<td>91</td>
</tr>
<tr>
<td>A month of three-rotor Enigma settings</td>
<td>96</td>
</tr>
<tr>
<td>The British Typex machine</td>
<td>121</td>
</tr>
<tr>
<td>Großadmiral Karl Dönitz’s surrender</td>
<td>157</td>
</tr>
<tr>
<td>M-209 in the field</td>
<td>165</td>
</tr>
<tr>
<td>Sigaba Machine (U.S.A.)</td>
<td>176</td>
</tr>
<tr>
<td>Lorenz SZ 40/42</td>
<td>206</td>
</tr>
<tr>
<td>Colossus</td>
<td>212</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Admiralty</td>
<td>British Royal Navy (the Marine generally used this term)</td>
</tr>
<tr>
<td>Arlington Hall</td>
<td>A former girl's school that housed the main American naval decryption effort near Washington, D.C.</td>
</tr>
<tr>
<td>B-Dienst</td>
<td>The Marine observation (Beobachtung) service responsible for intercepting radio signals</td>
</tr>
<tr>
<td>Bombe</td>
<td>Electromechanical deciphering machine first designed by Polish cryptanalysts to discover the daily settings of the Enigma</td>
</tr>
<tr>
<td>BP</td>
<td>Bletchley Park, the primary location of GC&CS and the cracking of Enigma</td>
</tr>
<tr>
<td>Colossus</td>
<td>British-designed protocomputer used primarily to crack the Geheimschreiber</td>
</tr>
<tr>
<td>cribs</td>
<td>Known message texts or phrases used as possible solutions for unknown texts</td>
</tr>
<tr>
<td>cryptology</td>
<td>The development of codes and ciphers (cryptography) and the cracking of the same (cryptanalysis); the study of codes and ciphers</td>
</tr>
<tr>
<td>decrypt</td>
<td>A signal that has been decrypted by the enemy</td>
</tr>
<tr>
<td>depths</td>
<td>More than one message being encrypted at the same or nearly the same setting; a breach of standard security procedures and an excellent entry point for cryptanalysts</td>
</tr>
<tr>
<td>D/F</td>
<td>Direction Finding – the process of locating the source of a (usually radio) signal through triangulation</td>
</tr>
<tr>
<td>discriminant</td>
<td>A group of letters placed in front of the encrypted text to indicate the setup used (e.g., the alignment of the xi</td>
</tr>
</tbody>
</table>
Glossary of Terms Used

Enigma rotors) at the start of the message’s encipherment and hence the degree of secrecy of the message or to distinguish one type or section of traffic from another

Enigma
Commercial name, used by both Germans and Allies, for the (portable) electromechanical enciphering machine used by the branches of the German Wehrmacht, SS, and railroads

Enigma M
The Marine’s version of the Enigma machine

Fish
British cover name for German radioteletype non-Morse intercepts and ciphering machines, specifically the Siemens Geheimschreiber T-52 series (code-named Sturgeon) and the Lorenz SZ 40/42 machines (code-named Tunny)

Geheimschreiber
Electromechanical enciphering machine used by the Germans for messages sent by wire (i.e., nonradio)

Heer
German Army

Huff/Duff
High Frequency Direction Finding (D/F)

Inspk. 7
OKH/Inspektorate 7/VI, which included the Heer’s cryptanalytic unit

Index
A room-size index card catalog of crucial terms and people mentioned in decrypted Enigma signals

indicator
One or more letter or figure groups placed somewhere in the message to indicate the key or subtractor used

intercept
Radio signals “caught” by the enemy’s interceptors, usually for location through D/F or for decryption

key
The setting for a cipher (e.g., Enigma machine) in a particular network for a specific period, commonly one day (hence, daily key)

Luftwaffe
German Air Force

Magic
American code name for decrypts from Purple

Marine
German Navy

Metox
A German radar warning device

MI6
Military Intelligence department 6 – responsible for external intelligence (comparable to the modern CIA)

MND
Marine Nachrichtendienst, the information service of the German Navy
Glossary of Terms Used • xiii

OKW
Oberkommando der Wehrmacht (Wehrmacht high
command)

one-time pad
A code based on sheets of substitutions to be used once
only. Highly secure

Purple
American code name for the high-grade Japanese
diplomatic cipher machine used just before and dur-
ing the war

re-encodements
Signals encrypted in more than one Enigma net
(repeats)

rotors
The turning wired wheels inside electromechanical
cipher machines, such as Enigma, which created a
set of electrical paths and the machine's enciphering
component

RSHA
Reichssicherheit Haupt Amt (Primary Reich Secu-
rit y Bureau), the Nazi government security and
intelligence agency that eventually absorbed the
Wehrmacht's Abwehr

Shark
Allied code name for the Enigma M used for U-boat
communications

Sigaba
American high-grade electromechanical cipher
machine, more advanced than Enigma

sigint
Signals intelligence or any intelligence from signals,
including D/F, Traffic Analysis, and decrypts

SLUs
Special Liaison Units, the teams responsible for pro-
tecting and transmitting Ultra Intelligence to battle-
field commanders

TA
Traffic Analysis, the tracking of signals, usually unde-
crypted, by origin, length, and number, and comparing
this information with past experience to project bomb-
ing raids, offensives, and retreats

TICOM
Target Intelligence Committee, Anglo-American
teams sent into German territory around the end
of the war to gather documents and personnel
with information on intelligence, cryptology, and
technological developments

Triton
German code name for the Enigma M used for U-boat
communications

Typex
British electromechanical cipher machine, more
advanced than Enigma
Glossary of Terms Used

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra</td>
<td>Allied code name for intelligence derived from Enigma decrypts</td>
</tr>
<tr>
<td>WAVES,</td>
<td>The women's auxiliary forces who assisted in cracking Enigma, often running the Bombes</td>
</tr>
<tr>
<td>WRENSES, WAAFS</td>
<td></td>
</tr>
<tr>
<td>Walze</td>
<td>Rotors in the German Enigma machines</td>
</tr>
<tr>
<td>Watch</td>
<td>The group of people at BP staffing an eight-hour shift of translating, typing, and analyzing Ultra</td>
</tr>
<tr>
<td>Wehrmacht</td>
<td>German Armed Forces (i.e., Marine, Heer, Luftwaffe, etc.; for most ex-officers, this term excludes the Nazi military and paramilitary groups such as the SS and Waffen SS)</td>
</tr>
<tr>
<td>X-B-Dienst</td>
<td>Division of B-Dienst responsible for decryption of enemy codes and ciphers</td>
</tr>
</tbody>
</table>
True knowledge comes from the exchange of ideas. No author researches and writes a book without help from many sources – I am no exception. My work rests not just on the foundations of the literature cited, but on the help, ideas, and enthusiasm of numerous people. As the research for this book took me across two continents, numerous archives, and many years, I had help and encouragement from strangers, colleagues, and friends. I cannot attempt to thank all of them, but here, briefly and incompletely, is an attempt to thank some of those helping hands.

I am greatly indebted to the Center for Cryptologic History at the National Security Agency (NSA), its NSA Scholar-in-Residence program, and its staff. David Hatch brought me into the program, opened all kinds of vital doors, and introduced me to some of America’s cryptologic geniuses. I had regular help on matters both small and significant from all the staff of the CCH and the National Cryptologic Museum, including Larry Sharp, Rowena Clough, and the late Dave Mowry, who also commented on drafts of this work.

My year at NSA also provided the wisdom and insights of two excellent sigint specialists and historians. Dr. Thomas Johnson has a likely unparalleled knowledge of American intelligence history and practice that I hope will inform our leaders as well as it has me. Robert J. Hanyok has shared his enthusiasm for history and sigint and spent many hours confirming details and procuring photos. Both of these experts have shaped my thinking and writing about cryptology and sigint. Thank you.

I owe much to Wladyslaw Kozaczuk and the late Sir Harry Hinsley for their works and correspondence. Arthur Levinson, Sir Edward Thomas, Alan Stripp, Peter Calvocoressi, and Ralph Bennett all spoke
eloquently of Bletchley. The late Cecil and Nancy Phillips provided useful details on the American side. Robert Harris saved me hours in the Public Record Office and kindly kindled interest with his novel *Enigma*. David J. Alvarez connected me with the journal *Intelligence and National Security* (INS) and NSA. Whitfield Diffie, Judith Field, and the British Society for the History of Mathematics prodded me to explore Enigma’s mathematics. Brian McCue offered radar and U-boat help and a most marvelous small-world moment. My thanks to Stephen J. Kelley and *Cryptologia*’s Louis Kruh for their interest and information.

Jürgen Rohwer gave me access to his archives and the Bibliothek für Zeitgeschichte and answered numerous questions about German historians, life in the Marine, and the German perspective on Enigma and Ultra. Ralph Erskine and Steve Budiansky pointed out important documents and gave me access to their own writings on World War II sigint. Wesley K. Wark read a very early version of this work and gave me excellent guidance. Mary Sutphen also offered comments on several chapters.

David Kahn has always been most generous with his time, knowledge, and materials. Although I have tried consciously not to lean too heavily on his excellent foundations, I owe a great debt to his works on cryptology, Enigma, and German intelligence.

Several grants made the research for this work possible, including the NSA residence program, a grant from the Department of Education for initial research and advanced German, and University of California, Berkeley, grants for research, travel, and writing. Sections of Chapter 6 appeared in the journal *Intelligence and National Security*, and I acknowledge their permission to include that material here.

Thanks also to my UCB connections, particularly Deborah Cohen, Takiyoshi Nishiuchi, Patricia Reilly, and Maxine Fredericksen. I still owe much to my doctoral committee: David Cohen, Margaret Anderson, Anthony Adamthwaite, Reginald Zelnick, and the late Art Quinn, who is greatly missed.

Throughout my research, I received crucial assistance from the personnel of several libraries and archives: the Mitarbeitern of the Bibliothek für Zeitgeschichte; the staffs of the Bundes-Militärarchiv and the Auswärtiges Amt’s archive; the reference librarians at the PRO; and the staff and volunteers at NSA’s National Cryptologic History Museum.
My greatest debt of all is to Timothy P. Mulligan of National Archives and Records Administration. The use of technology in archives has improved the researcher’s lot tremendously; but no technology, however advanced, can provide a researcher with the depth of information, years of lessons in German naval matters, and numerous gentle nudges toward crucial documents that Tim has provided for more than a decade. Archivists such as he are a national resource, and they are retiring unreplaced. In the midst of its rush to acquire all things electronic, NARA’s administration should not neglect this most valuable resource of all.

For the actual writing, I was aided by Sonja Aschenbrenner and Tanja Fassel managing Schnabel and Snüffel, by quiet spots in Stevens Hall, NARA, and Cañada College, by my antique printer’s forbearance, and by Chris Gellrich’s support and technical assistance. Dr. (med.) Birgit Jödicke not only introduced me to German and provided decades of friendship, including ein Patenkind (Lisa Joanna), she also cast her professional translator’s eye over my work (any remaining errors are, of course, mine).

The support and encouragement from family and friends has made this work both possible and a joy. Thanks and appreciation to my parents, who still keep an eye out for all things Enigma-related; to the best siblings ever, Rosemary and Jamie; and to S. G. Hamlen, whose support, encouragement, and keen editorial eye made all the difference and who recommended the Groupthink book ages ago. Jonathan Klein, Anne Wright, and Chris Gellrich kindly agreed to read everything with fresh eyes. I remain forever grateful to James E. Ratcliff, Jr., for mentioning that story about the Poles cracking some code during the war and for subsequently reading everything I passed him on the subject – including the numerous iterations of this work. Thanks Dad.

Finally, thanks to Lewis Bateman for initially adopting the book, and to Eric Crahan and, especially, Frank Smith of Cambridge University Press, who waited patiently through my mergers and acquisitions for the final product.

R. A. Ratcliff
May 2005