## Contents

*Preface*  
*How to use this book*

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Introduction: mesoscopic physics</strong></td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Interference and disorder</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>The Aharonov–Bohm effect</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Phase coherence and the effect of disorder</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Average coherence and multiple scattering</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>Phase coherence and self-averaging: universal fluctuations</td>
<td>12</td>
</tr>
<tr>
<td>1.6</td>
<td>Spectral correlations</td>
<td>14</td>
</tr>
<tr>
<td>1.7</td>
<td>Classical probability and quantum crossings</td>
<td>15</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Quantum crossings</td>
<td>17</td>
</tr>
<tr>
<td>1.8</td>
<td>Objectives</td>
<td>18</td>
</tr>
</tbody>
</table>

| 2       | **Wave equations in random media**                                   | 31   |
| 2.1     | Wave equations                                                       | 31   |
| 2.1.1   | Electrons in a disordered metal                                       | 31   |
| 2.1.2   | Electromagnetic wave equation – Helmholtz equation                    | 32   |
| 2.1.3   | Other examples of wave equations                                      | 33   |
| 2.2     | Models of disorder                                                    | 36   |
| 2.2.1   | The Gaussian model                                                    | 37   |
| 2.2.2   | Localized impurities: the Edwards model                               | 39   |
| 2.2.3   | The Anderson model                                                    | 41   |

Appendix A2.1: Theory of elastic collisions and single scattering  
A2.1.1 Asymptotic form of the solutions                             43  
A2.1.2 Scattering cross section and scattered flux                   46  
A2.1.3 Optical theorem                                               47  
A2.1.4 Born approximation                                            51  

Appendix A2.2: Reciprocity theorem                                   54  
Appendix A2.3: Light scattering                                      56  
A2.3.1 Classical Rayleigh scattering                                 56
## Contents

5.5 Diffusion in finite systems  
5.5.1 Diffusion time and Thouless energy  
5.5.2 Boundary conditions for the diffusion equation  
5.5.3 Finite volume and “zero mode”  
5.5.4 Diffusion in an anisotropic domain  
5.6 One-dimensional diffusion  
5.6.1 The ring: periodic boundary conditions  
5.6.2 Absorbing boundaries: connected wire  
5.6.3 Reflecting boundaries: isolated wire  
5.6.4 Semi-infinite wire  
5.7 The image method  
Appendix A5.1: Validity of the diffusion approximation in an infinite medium  
Appendix A5.2: Radiative transfer equation  
A5.2.1 Total intensity  
A5.2.2 Diffuse intensity  
A5.2.3 Boundary conditions  
A5.2.4 Slab illuminated by an extended source  
A5.2.5 Semi-infinite medium illuminated by a collimated beam  
Appendix A5.3: Multiple scattering in a finite medium  
A5.3.1 Multiple scattering in a half-space: the Milne problem  
A5.3.2 Diffusion in a finite medium  
Appendix A5.4: Spectral determinant  
Appendix A5.5: Diffusion in a domain of arbitrary shape – Weyl expansion  
Appendix A5.6: Diffusion on graphs  
A5.6.1 Spectral determinant on a graph  
A5.6.2 Examples  
A5.6.3 Thermodynamics, transport and spectral determinant  
6 Dephasing  
6.1 Dephasing and multiple scattering  
6.1.1 Generalities  
6.1.2 Mechanisms for dephasing: introduction  
6.1.3 The Goldstone mode  
6.2 Magnetic field and the Cooperon  
6.3 Probability of return to the origin in a uniform magnetic field  
6.4 Probability of return to the origin for an Aharonov–Bohm flux  
6.4.1 The ring  
6.4.2 The cylinder  
6.5 Spin-orbit coupling and magnetic impurities  
6.5.1 Transition amplitude and effective interaction potential  
6.5.2 Total scattering time  
6.5.3 Structure factor
## Contents

6.5.4 The Diffuson 219  
6.5.5 The Cooperon 221  
6.5.6 The diffusion probability 223  
6.5.7 The Cooperon $X_c$ 224  

6.6 Polarization of electromagnetic waves 226  
6.6.1 Elastic mean free path 227  
6.6.2 Structure factor 228  
6.6.3 Classical intensity 231  
6.6.4 Coherent backscattering 233  

6.7 Dephasing and motion of scatterers 234  
6.7.1 General expression for the phase shift 234  
6.7.2 Dephasing associated with the Brownian motion of the scatterers 237  

6.8 Dephasing or decoherence? 238  
Appendix A6.1: Aharonov–Bohm effect in an infinite plane 240  
Appendix A6.2: Functional representation of the diffusion equation 242  
  A6.2.1 Functional representation 242  
  A6.2.2 Brownian motion and magnetic field 244  
Appendix A6.3: The Cooperon in a time-dependent field 247  
Appendix A6.4: Spin-orbit coupling and magnetic impurities, a heuristic point of view 251  
  A6.4.1 Spin-orbit coupling 251  
  A6.4.2 Magnetic impurities 254  
Appendix A6.5: Decoherence in multiple scattering of light by cold atoms 256  
  A6.5.1 Scattering amplitude and atomic collision time 256  
  A6.5.2 Elementary atomic vertex 257  
  A6.5.3 Structure factor 262  

7 Electronic transport 270  
7.1 Introduction 270  
7.2 Incoherent contribution to conductivity 273  
  7.2.1 Drude–Boltzmann approximation 273  
  7.2.2 The multiple scattering regime: the Diffuson 276  
  7.2.3 Transport time and vertex renormalization 278  
7.3 Cooperon contribution 279  
7.4 The weak localization regime 281  
  7.4.1 Dimensionality effect 282  
  7.4.2 Finite size conductors 284  
  7.4.3 Temperature dependence 285  
7.5 Weak localization in a magnetic field 286  
  7.5.1 Negative magnetoresistance 286  
  7.5.2 Spin-orbit coupling and magnetic impurities 290
## Contents

**7.6 Magnetoresistance and Aharonov–Bohm flux**
- 7.6.1 Ring
- 7.6.2 Long cylinder: the Sharvin–Sharvin effect
- 7.6.3 Remark on the Webb and Sharvin–Sharvin experiments: $\phi_0$ versus $\phi_0/2$
- 7.6.4 The Aharonov–Bohm effect in an infinite plane

Appendix A7.1: Kubo formulae
- A7.1.1 Conductivity and dissipation
- A7.1.2 Density-density response function

Appendix A7.2: Conductance and transmission
- A7.2.1 Introduction: Landauer formula
- A7.2.2 From Kubo to Landauer
- A7.2.3 Average conductance and transmission
- A7.2.4 Boundary conditions and impedance matching
- A7.2.5 Weak localization correction in the Landauer formalism
- A7.2.6 Landauer formalism for waves

Appendix A7.3: Real space description of conductivity

Appendix A7.4: Weak localization correction and anisotropic collisions

**8 Coherent backscattering of light**
- 8.1 Introduction
- 8.2 The geometry of the albedo
- 8.2.1 Definition
- 8.2.2 Albedo of a diffusive medium
- 8.3 The average albedo
- 8.3.1 Incoherent albedo: contribution of the Diffuson
- 8.3.2 The coherent albedo: contribution of the Cooperon
- 8.4 Time dependence of the albedo and study of the triangular cusp
- 8.5 Effect of absorption
- 8.6 Coherent albedo and anisotropic collisions
- 8.7 The effect of polarization
- 8.7.1 Depolarization coefficients
- 8.7.2 Coherent albedo of a polarized wave
- 8.8 Experimental results
- 8.8.1 The triangular cusp
- 8.8.2 Decrease of the height of the cone
- 8.8.3 The role of absorption
- 8.9 Coherent backscattering at large
- 8.9.1 Coherent backscattering and the “glory” effect
- 8.9.2 Coherent backscattering and opposition effect in astrophysics
- 8.9.3 Coherent backscattering by cold atomic gases
- 8.9.4 Coherent backscattering effect in acoustics
9 Diffusing wave spectroscopy 354
  9.1 Introduction 354
  9.2 Dynamic correlations of intensity 355
  9.3 Single scattering: quasi-elastic light scattering 357
  9.4 Multiple scattering: diffusing wave spectroscopy 358
  9.5 Influence of the geometry on the time correlation function 359
    9.5.1 Reflection by a semi-infinite medium 359
    9.5.2 Comparison between $G_r^1(T)$ and $\alpha_c(\theta)$ 361
    9.5.3 Reflection from a finite slab 363
    9.5.4 Transmission 364
Appendix A9.1: Collective motion of scatterers 367

10 Spectral properties of disordered metals 370
  10.1 Introduction 370
  10.1.1 Level repulsion and integrability 371
  10.1.2 Energy spectrum of a disordered metal 373
  10.2 Characteristics of spectral correlations 374
  10.3 Poisson distribution 375
  10.4 Universality of spectral correlations: random matrix theory 377
    10.4.1 Level repulsion in $2 \times 2$ matrices 377
    10.4.2 Distribution of eigenvalues for $N \times N$ matrices 380
    10.4.3 Spectral properties of random matrices 382
  10.5 Spectral correlations in the diffusive regime 385
    10.5.1 Two-point correlation function 386
    10.5.2 The ergodic limit 390
    10.5.3 Free diffusion limit 391
Appendix A10.1: The GOE–GUE transition 394

11 Universal conductance fluctuations 396
  11.1 Introduction 396
  11.2 Conductivity fluctuations 399
    11.2.1 Fluctuations of the density of states 402
    11.2.2 Fluctuations of the diffusion coefficient 405
  11.3 Universal conductance fluctuations 406
  11.4 Effect of external parameters 409
    11.4.1 Energy dependence 409
    11.4.2 Temperature dependence 409
    11.4.3 Phase coherence and the mesoscopic regime 411
    11.4.4 Magnetic field dependence 415
    11.4.5 Motion of scatterers 418
    11.4.6 Spin-orbit coupling and magnetic impurities 419
Appendix A11.1: Universal conductance fluctuations and anisotropic collisions 422
Appendix A11.2: Conductance fluctuations in the Landauer formalism 424
12 Correlations of speckle patterns

12.1 What is a speckle pattern? 427
12.2 How to analyze a speckle pattern 428
12.3 Average transmission coefficient 433
12.4 Angular correlations of the transmitted light
   12.4.1 Short range $C^{(1)}$ correlations 435
   12.4.2 Long range correlations $C^{(2)}$ 439
   12.4.3 Two-crossing contribution and $C^{(3)}$ correlation 441
   12.4.4 Relation with universal conductance fluctuations 445
12.5 Speckle correlations in the time domain
   12.5.1 Time dependent correlations $C^{(1)}(t)$ and $C^{(2)}(t)$ 447
   12.5.2 Time dependent correlation $C^{(3)}(t)$ 450
12.6 Spectral correlations of speckle patterns 452
12.7 Distribution function of the transmission coefficients
   12.7.1 Rayleigh distribution law 454
   12.7.2 Gaussian distribution of the transmission coefficient $T_a$ 455
   12.7.3 Gaussian distribution of the electrical conductance 456
Appendix A12.1: Spatial correlations of light intensity
   A12.1.1 Short range correlations 459
   A12.1.2 Long range correlations 461

13 Interactions and diffusion

13.1 Introduction 465
13.2 Screened Coulomb interaction 466
13.3 Hartree–Fock approximation 468
13.4 Density of states anomaly
   13.4.1 Static interaction 470
   13.4.2 Tunnel conductance and density of states anomaly 475
   13.4.3 Dynamically screened interaction 478
   13.4.4 Capacitive effects 481
13.5 Correction to the conductivity 483
13.6 Lifetime of a quasiparticle
   13.6.1 Introduction: Landau theory and disorder 487
   13.6.2 Lifetime at zero temperature 487
   13.6.3 Quasiparticle lifetime at finite temperature 494
   13.6.4 Quasiparticle lifetime at the Fermi level 495
13.7 Phase coherence
   13.7.1 Introduction 498
   13.7.2 Phase coherence in a fluctuating electric field 499
   13.7.3 Phase coherence time in dimension $d = 1$ 502
   13.7.4 Phase coherence and quasiparticle relaxation 506
   13.7.5 Phase coherence time in dimensions $d = 2$ and $d = 3$ 509
   13.7.6 Measurements of the phase coherence time $\tau^{ee}_\phi$ 510
### Contents

| Appendix A13.1: Screened Coulomb potential in confined geometry | 512 |
| Appendix A13.2: Lifetime in the absence of disorder | 514 |

#### 14 Orbital magnetism and persistent currents 516

14.1 Introduction 516
14.2 Free electron gas in a uniform field 518
14.2.1 A reminder: the case of no disorder 518
14.2.2 Average magnetization 521
14.2.3 Fluctuations of the magnetization 522
14.3 Effect of Coulomb interaction 524
14.3.1 Hartree–Fock approximation 525
14.3.2 Cooper renormalization 526
14.3.3 Finite temperature 528
14.4 Persistent current in a ring 528
14.4.1 Clean one-dimensional ring: periodicity and parity effects 529
14.4.2 Average current 534
14.5 Diffusive limit and persistent current 536
14.5.1 Typical current of a disordered ring 537
14.5.2 Effect of the Coulomb interaction on the average current 539
14.5.3 Persistent current and spin-orbit coupling 542
14.5.4 A brief overview of experiments 543
Appendix A14.1: Average persistent current in the canonical ensemble 545

#### 15 Formulary 547

15.1 Density of states and conductance 547
15.2 Fourier transforms: definitions 548
15.3 Collisionless probability $P_0(r,r',t)$ 548
15.4 Probability $P(r,r',t)$ 548
15.5 Wigner–Eckart theorem and $3j$-symbols 551
15.6 Miscellaneous 552
15.7 Poisson formula 558
15.8 Temperature dependences 558
15.9 Characteristic times introduced in this book 559

References 561
Index 582