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Modelling solids

1.1 Introduction

In everyday life we regularly encounter physical phenomena that apparently
vary continuously in space and time. Examples are the bending of a paper
clip, the flow of water or the propagation of sound or light waves. Such phe-
nomena can be described mathematically, to lowest order, by a continuum
model, and this book will be concerned with that class of continuum models
that describes solids. Hence, at least to begin with, we will avoid all consid-
eration of the “atomistic” structure of solids, even though these ideas lead
to great practical insight and also to some beautiful mathematics. When
we refer to a solid “particle”, we will be thinking of a very small region of
matter but one whose dimension is nonetheless much greater than an atomic
spacing.

For our purposes, the diagnostic feature of a solid is the way in which it
responds to an applied system of forces and moments. There is no hard-and-
fast rule about this but, for most of this book, we will say that a continuum is
a solid when the response consists of displacements distributed through the
material. In other words, the material starts at some reference state, from
which it is displaced by a distance that depends on the applied forces. This is
in contrast with a fluid, which has no special rest state and responds to forces
via a velocity distribution. Our modelling philosophy is straightforward. We
take the most fundamental pieces of experimental evidence, for example
Hooke’s law, and use mathematical ideas to combine this evidence with
the basic laws of mechanics to construct a model that describes the elastic
deformation of a continuous solid. Following this simple approach, we will
find that we can construct solid mechanics theories for phenomena as diverse
as earthquakes, ultrasonic testing and the buckling of railway tracks.
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2 Modelling solids

By basing our theory on Hooke’s law, the simplest model of elasticity,
for small enough forces and displacements, we will first be led to a system
of differential equations that is both linear, and therefore mathematically
tractable, and reversible for time-dependent problems. By this we mean
that, when forces and moments are applied and then removed, the system
eventually returns to its original state without any significant energy being
lost, i.e. the system is not dissipative.

Reversibility may apply even when the forces and displacements are so
large that the problem ceases to be linear; a rubber band, for example,
can undergo large displacements and still return to its initial state. How-
ever, nonlinear elasticity encompasses some striking new behaviours not
predicted by linear theory, including the possibility of multiple steady states
and buckling. For many materials, experimental evidence reveals that even
more dramatic changes can take place as the load increases, the most strik-
ing phenomenon being that of fracture under extreme stress. On the other
hand, as can be seen by simply bending a metal paper clip, irreversibility
can readily occur and this is associated with plastic flow that is significantly
dissipative. In this situation, the solid takes on some of the attributes of a
fluid, but the model for its flow is quite different from that for, say, water.

Practical solid mechanics encompasses not only all the phenomena men-
tioned above but also the effects of elasticity when combined with heat
transfer (leading to thermoelasticity) and with genuine fluid effects, in cases
where the material flows even in the absence of large applied forces (leading
to viscoelasticity) or when the material is porous (leading to poroelastic-
ity). We will defer consideration of all these combined fields until the final
chapter.

1.2 Hooke’s law

Robert Hooke (1678) wrote

“it is . . . evident that the rule or law of nature in every springing body is that the
force or power thereof to restore itself to its natural position is always proportionate
to the distance or space it is removed therefrom, whether it be by rarefaction, or
separation of its parts the one from the other, or by condensation, or crowding of
those parts nearer together.”

Hooke’s observation is exemplified by a simple high-school physics experi-
ment in which a tensile force T is applied to a spring whose natural length
is L. Hooke’s law states that the resulting extension of the spring is propor-
tional to T : if the new length of the spring is �, then

T = k(� − L), (1.2.1)

where the constant of proportionality k is called the spring constant.
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1.3 Lagrangian and Eulerian coordinates 3

Hooke devised his law while designing clock springs, but noted that it
appears to apply to all “springy bodies whatsoever, whether metal, wood,
stones, baked earths, hair, horns, silk, bones, sinews, glass and the like.” In
practice, it is commonly observed that k scales with 1/L; that is, everything
else being equal, a sample that is initially twice as long will stretch twice
as far under the same force. It is therefore sensible to write (1.2.1) in the
form

T = k′ � − L

L
, (1.2.2)

where k′ is the elastic modulus of the spring, which will be defined more
rigorously in Chapter 2. The dimensionless quantity (� − L)/L, measuring
the extension relative to the initial length, is called the strain.

Equation (1.2.2) is the simplest example of the all-important constitutive
law relating the force to displacement. As shown in Exercise 1.3, it is possible
to construct a one-dimensional continuum model for an elastic solid from
this law, but, to generalise it to a three-dimensional continuum, we first need
to generalise the concepts of strain and tension.

1.3 Lagrangian and Eulerian coordinates

Suppose that a three-dimensional solid starts, at time t = 0, in its rest
state, or reference state, in which no macroscopic forces exist in the solid
or on its boundary. Under the action of any subsequently applied forces
and moments, the solid will be deformed such that, at some later time t, a
“particle” in the solid whose initial position was the point X is displaced
to the point x (X, t). This is a Lagrangian description of the continuum: if
the independent variable X is held fixed as t increases, then x(X, t) labels
a material particle. In the alternative Eulerian approach, we consider the
material point which currently occupies position x at time t, and label its
initial position by X(x, t). In short, the Eulerian coordinate x is fixed in
space, while the Lagrangian coordinate X is fixed in the material.

The displacement u(X, t) is defined in the obvious way to be the difference
between the current and initial positions of a particle, that is

u(X, t) = x(X, t) − X. (1.3.1)

Many basic problems in solid mechanics amount to determining the dis-
placement field u corresponding to a given system of applied forces.

The mathematical consequence of our statement that the solid is a con-
tinuum is that there must be a smooth one-to-one relationship between X

and x, i.e. between any particle’s initial position and its current position.
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4 Modelling solids

This will be the case provided the Jacobian of the transformation from X

to x is bounded away from zero:

0 < J < ∞, where J = det
(

∂xi

∂Xj

)
. (1.3.2)

The physical significance of J is that it measures the change in a small
volume compared with its initial volume:

dx1dx2dx3 = J dX1dX2dX3, or dx = J dX (1.3.3)

as shorthand. The positivity of J means that we exclude the possibility that
the solid turns itself inside-out.

We can use (1.3.3) to derive a kinematic equation representing conserva-
tion of mass. Consider a moving volume V (t) that is always bounded by
the same solid particles. Its mass at time t is given, in terms of the density
ρ(X, t), by

M(t) =
∫∫∫

V (t)
ρ dx =

∫∫∫
V (0)

ρJ dX. (1.3.4)

Since V (t) designates a fixed set of material points, M(t) must be a constant,
namely its initial value M(0):∫∫∫

V (0)
ρJ dX = M(t) = M(0) =

∫∫∫
V (0)

ρ0 dX, (1.3.5)

where ρ0 is the density in the rest state. Since V is arbitrary, we deduce that

ρJ = ρ0. (1.3.6)

Hence, we can calculate the density at any time t in terms of ρ0 and the
displacement field. The initial density ρ0 is usually taken as constant, but
(1.3.6) also applies if ρ0 = ρ0(X).

1.4 Strain

To generalise the concept of strain introduced in Section 1.2, we consider the
deformation of a small line segment joining two neighbouring particles with
initial positions X and X + δX. At some later time, the solid deforms such
that the particles are displaced to X +u(X, t) and X + δX +u(X + δX, t)
respectively. Thus we can use Taylor’s theorem to show that the line element
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1.4 Strain 5

δX that joins the two particles is transformed to

δx = δX +u(X + δX, t)−u(X, t) = δX +(δX ·∇)u(X, t)+ · · · , (1.4.1)

where

(δX · ∇) = δX1
∂

∂X1
+ δX2

∂

∂X2
+ δX3

∂

∂X3
. (1.4.2)

Let L = |δX| and � = |δx| denote the initial and current lengths respectively
of the line segment; the difference � − L is known as the stretch. Then, to
lowest order in L,

�2 = |δX + (δX · ∇)u(X, t)|2. (1.4.3)

Although we will try in subsequent chapters to minimise the use of
suffices, it is helpful at this stage to introduce components so that
X = (Xi) = (X1, X2, X3)T and similarly for u. Then (1.4.3) may be written
in the form

�2 − L2 = 2
3∑

i,j=1

Eij δXiδXj, (1.4.4)

where

Eij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi
+

3∑
k=1

∂uk

∂Xi

∂uk

∂Xj

)
. (1.4.5)

By way of introduction to some notation that will be useful later, we point
out that (1.4.4) may be written in at least two alternative ways. First, we
may invoke the summation convention, in which one automatically sums over
any repeated suffix. This avoids the annoyance of having to write explicit
summation, so (1.4.4) is simply

�2 = L2 + 2Eij δXiδXj, where Eij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi
+

∂uk

∂Xi

∂uk

∂Xj

)
.

(1.4.6)

Second, we note that �2 − L2 is a quadratic form on the symmetric matrix
E whose components are (Eij):

�2 − L2 = 2 δXTE δX. (1.4.7)

It is clear from (1.4.4) that the stretch is measured by the quantities Eij ;
in particular, the stretch is zero for all line elements if and only if Eij ≡ 0. It
is thus natural to identify Eij with the strain. Now let us ask: “what happens
when we perform the same calculation in a coordinate system rotated by an
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6 Modelling solids

orthogonal matrix P = (pij)?” Intuitively, we might expect the strain to be
invariant under such a rotation, and we can verify that this is so as follows.

The vectors X and u are transformed to X ′ and u′ in the new coordinate
system, where

X ′ = PX, u′ = Pu. (1.4.8)

Since P is orthogonal, (1.4.8) may be inverted to give X = PTX ′. Alterna-
tively, using suffix notation, we have

Xβ = pjβX ′
j , u′

i = piαuα. (1.4.9)

The strain in the new coordinate system is denoted by

E ′
ij =

1
2

(
∂u′

i

∂X ′
j

+
∂u′

j

∂X ′
i

+
∂u′

k

∂X ′
i

∂u′
k

∂X ′
j

)
, (1.4.10)

which may be manipulated using the chain rule, as shown in Exercise 1.4,
to give

E ′
ij = piαpjβEαβ. (1.4.11)

In matrix notation, (1.4.11) takes the form

E ′ = PEPT, (1.4.12)

so the 3 × 3 symmetric array (Eij) transforms exactly like a matrix repre-
senting a linear transformation of the vector space R

3. Arrays that obey the
transformation law (1.4.11) are called second-rank Cartesian tensors, and
E = (Eij) is therefore called the strain tensor.†

Almost as important as the fact that E is a tensor is the fact that it
can vanish without u vanishing. More precisely, if we consider a rigid-body
translation and rotation

u = c + (Q − I)X, (1.4.13)

where I is the identity matrix while the vector c and orthogonal matrix
Q are constant, then E is identically zero. This result follows directly from
substituting (1.4.13) into (1.4.6) and using the fact that QQT = I, and
confirms our intuition that a rigid-body motion induces no deformation.

†
The word “tensor” as used here is effectively synonymous with “matrix”, but it is easy to
generalise (1.4.11) to a tensor with any number of indices. A vector, for example, is a tensor
with just one index.
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1.5 Stress 7

1.5 Stress

In the absence of any volumetric (e.g. gravitational or electromagnetic) ef-
fects, a force can only be transmitted to a solid by being applied to its
boundary. It is, therefore, natural to consider the force per unit area or
stress applied at that boundary. To do so, we now analyse an infinitesimal
surface element, whose area and unit normal are da and n respectively. If it
is contained within a stressed medium, then the material on (say) the side
into which n points will exert a force df on the element. (By Newton’s third
law, the material on the other side will also exert a force equal to −df .) In
the expectation that the force should be proportional to the area da, we
write

df = σ da, (1.5.1)

where σ is called the traction or stress acting on the element.
Perhaps the most familiar example is that of an inviscid fluid, in which

the stress is related to the pressure p by

σ = −pn. (1.5.2)

This expression implies that (i) the stress acts only in a direction normal
to the surface element, (ii) the magnitude of the stress (i.e. p) is indepen-
dent of the direction of n. In an elastic solid, neither of these simplifying
assumptions holds; we must allow for stress which acts in both tangential
and normal directions and whose magnitude depends on the orientation of
the surface element.

First consider a surface element whose normal points in the x1-direction,
and denote the stress acting on such an element by τ 1 = (τ11, τ21, τ31)T. By
doing the same for elements with normals in the x2- and x3-directions, we
generate three vectors τ j (j = 1, 2, 3), each representing the stress acting
on an element normal to the xj -direction. In total, therefore, we obtain nine
scalars τij (i, j = 1, 2, 3), where τij is the i-component of τ j , that is

τ j = τijei, (1.5.3)

where ei is the unit vector in the xi-direction.
The scalars τij may be used to determine the stress on an arbitrary surface

element by considering the tetrahedron shown in Figure 1.1. Here ai denotes
the area of the face orthogonal to the xi-axis. The fourth face has area
a =

√
a2

1 + a2
2 + a2

3; in fact if this face has unit normal n as shown, with
components (ni), then it is an elementary exercise in trigonometry to show
that ai = ani.
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8 Modelling solids

a2

a3

x1

x3

x2

n

a1

Fig. 1.1 A reference tetrahedron; ai is the area of the face orthogonal to the xi-axis.

The outward normal to the face with area a1 is in the negative x1-direction
and the force on this face is thus −a1τ 1. Similar expressions hold for the
faces with areas a2 and a3. Hence, if the stress on the fourth face is denoted
by σ, then the total force on the tetrahedron is

f = aσ − ajτ j . (1.5.4)

When we substitute for aj and τ j , we find that the components of f are
given by

fi = a (σi − τijnj) . (1.5.5)

Now we shrink the tetrahedron to zero volume. Since the area a scales
with �2, where � is a typical edge length, while the volume is proportional
to �3, if we apply Newton’s second law and insist that the acceleration be
finite, we see that f/a must tend to zero as � → 0.† Hence we deduce an

†
Readers of a sensitive disposition may be slightly perturbed by our glibly letting the dimensional
variable � tend to zero: if � is reduced indefinitely then we will eventually reach an atomic scale
on which the solid can no longer be treated as a continuum. We reassure such readers that
(1.5.6) can be more rigorously justified provided the macroscopic dimensions of the solid are
large compared to any atomistic length-scale.
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1.5 Stress 9

G
τ11

τ11

τ22

τ21

τ22

τ12

τ12

τ21

x2

x1

δx2

δx1

Fig. 1.2 The forces acting on a small two-dimensional element.

expression for σ:
σi = τijnj , or σ = τn. (1.5.6)

This important result enables us to find the stress on any surface element
in terms of the nine quantities (τij) = τ .

Now let us follow Section 1.4 and examine what happens to τij when we
rotate the axes by an orthogonal matrix P . In the new frame, (1.5.6) will
become

σ′ = τ ′n′ (1.5.7)

where, since σ and n are vectors, they transform according to

σ′ = Pσ, n′ = Pn. (1.5.8)

It follows that τ ′n = (PτPT)n and so, since n is arbitrary,

τ ′ = PτPT, or τ ′
ij = piαpjβταβ. (1.5.9)

Thus τij , like Eij , is a second-rank tensor, called the Cauchy stress tensor.
We can make one further observation about τij by considering the angular

momentum of the small two-dimensional solid element shown in Figure 1.2.
The net anticlockwise moment acting about the centre of mass G is (per
unit length in the x3-direction)

2 (τ21δx2)
δx1

2
− 2 (τ12δx1)

δx2

2
,
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10 Modelling solids

where τ21 and τ12 are evaluated at G to lowest order. By letting the rectangle
shrink to zero (see again the footnote on page 8), and insisting that the
angular acceleration be finite, we deduce that τ12 = τ21. This argument can
be generalised to three dimensions (see Exercise 1.5) and it shows that

τij ≡ τji (1.5.10)

for all i and j, i.e. that τij , like Eij , is a symmetric tensor.

1.6 Conservation of momentum

Now we derive the basic governing equation of solid mechanics by apply-
ing Newton’s second law to a material volume V (t) that moves with the
deforming solid:

d
dt

∫∫∫
V (t)

∂ui

∂t
ρ dx =

∫∫∫
V (t)

giρ dx +
∫∫

∂V (t)
τijnj da. (1.6.1)

The terms in (1.6.1) represent successively the rate of change of momentum
of the material in V (t), the force due to an external body force g, such as
gravity, and the traction exerted on the boundary of V , whose unit normal
is n, by the material around it. We differentiate under the integral (using
the fact that ρ dx = ρ0 dX is independent of t) and apply the divergence
theorem to the final term to obtain∫∫∫

V (t)

∂2ui

∂t2
ρ dx =

∫∫∫
V (t)

giρ dx +
∫∫∫

V (t)

∂τij

∂xj
dx. (1.6.2)

Assuming each integrand is continuous, and using the fact that V (t) is ar-
bitrary, we arrive at Cauchy’s momentum equation:

ρ
∂2ui

∂t2
= ρgi +

∂τij

∂xj
. (1.6.3)

This may alternatively be written in vector form by adopting the following
notation for the divergence of a tensor: we define the ith component of ∇ · τ
to be

(∇ · τ)i =
∂τji

∂xj
. (1.6.4)

Since τ is symmetric, we may thus write Cauchy’s equation as

ρ
∂2u

∂t2
= ρg + ∇ · τ. (1.6.5)

This equation applies to any continuous medium for which a displacement
u and stress tensor τ can be defined. The distinction between solid, fluid
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