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Observational Studies and Experiments

1.1 Introduction

This book is about regression models and variants like path models,
simultaneous-equation models, logits and probits. Regression models can be
used for different purposes:

(i) to summarize data,
(ii) to predict the future,

(iii) to predict the results of interventions.

The third—causal inference—is the most interesting and the most slippery. It
will be our focus. For background, this section covers some basic principles
of study design.

Causal inferences are made from observational studies, natural exper-
iments, and randomized controlled experiments. When using observational
(non-experimental) data to make causal inferences, the key problem is con-
founding. Sometimes this problem is handled by subdividing the study pop-
ulation (stratification, also called cross-tabulation), and sometimes by mod-
eling. These strategies have various strengths and weaknesses, which need
to be explored.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521854830 - Statistical Models: Theory and Practice
David A. Freedman
Excerpt
More information

http://www.cambridge.org/0521854830
http://www.cambridge.org
http://www.cambridge.org


2 Chapter 1

In medicine and social science, causal inferences are most solid when
based on randomized controlled experiments, where investigators assign sub-
jects at random—by the toss of a coin—to a treatment group or to a control
group. Up to random error, the coin balances the two groups with respect to
all relevant factors other than treatment. Differences between the treatment
group and the control group are therefore due to treatment. That is why causa-
tion is relatively easy to infer from experimental data. However, experiments
tend to be expensive, and may be impossible for ethical or practical reasons.
Then statisticians turn to observational studies.

In an observational study, it is the subjects who assign themselves to
the different groups. The investigators just watch what happens. Studies on
the effects of smoking, for instance, are necessarily observational. However,
the treatment-control terminology is still used. The investigators compare
smokers—the treatment group, also called the exposed group—with non-
smokers (the control group) to determine the effect of smoking. The jargon
is a little confusing, because the word “control” has two senses:

(i) a control is a subject who did not get the treatment;
(ii) a controlled experiment is a study where the investigators decide

who will be in the treatment group.

Smokers come off badly in comparison with nonsmokers. Heart attacks,
lung cancer, and many other diseases are more common among smokers.
There is a strong association between smoking and disease. If cigarettes cause
disease, that explains the association: e.g., death rates are higher for smokers
because cigarettes kill. Generally, association is circumstantial evidence for
causation. However, the proof is incomplete. There may be some hidden
confounding factor which makes people smoke and also makes them sick.
If so, there is no point in quitting: that will not change the hidden factor.
Association is not the same as causation.

Confounding means a difference between the treatment and con-
trol groups—other than the treatment—which affects the response
being studied.

Typically, a confounder is a third variable, which is associated with exposure
and influences the risk of disease.

Statisticians like Joseph Berkson and R. A. Fisher did not believe the
evidence against cigarettes, and suggested possible confounding variables.
Epidemiologists (including Richard Doll and Bradford Hill in England, as
well as Wynder, Graham, Hammond, Horn, and Kahn in the United States)
ran careful observational studies to show these alternative explanations were
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Observational Studies 3

not plausible. Taken together, the studies make a powerful case that smoking
causes heart attacks, lung cancer, and other diseases. If you give up smoking,
you will live longer.

Epidemiological studies often make comparisons separately for smaller
and more homogeneous groups, assuming that within these groups, subjects
have been assigned to treatment or control as if by randomization. For ex-
ample, a crude comparison of death rates among smokers and nonsmokers
could be misleading if smokers are disproportionately male, because men are
more likely than women to have heart disease and cancer. Gender is there-
fore a confounder. To control for this confounder—a third use of the word
“control”—epidemiologists compared male smokers to male nonsmokers,
and females to females.

Age is another confounder. Older people have different smoking habits,
and are more at risk for heart disease and cancer. So the comparison between
smokers and nonsmokers was made separately by gender and age: for ex-
ample, male smokers age 55–59 were compared to male nonsmokers in the
same age group. This controls for gender and age. Air pollution would be
a confounder, if air pollution causes lung cancer and smokers live in more
polluted environments. To control for this confounder, epidemiologists made
comparisons separately in urban, suburban, and rural areas. In the end, expla-
nations for health effects of smoking in terms of confounders became very,
very implausible.

Of course, as we control for more and more variables this way, study
groups get smaller and smaller, leaving more and more room for chance
effects. This is a problem with cross-tabulation as a method for dealing with
confounders, and a reason for using statistical models. Furthermore, most
observational studies will be less compelling than the ones on smoking. The
following (slightly artificial) example illustrates the problem.

Example 1. In cross-national comparisons, there is a striking correlation
between the number of telephone lines per capita in a country and the death
rate from breast cancer in that country. This is not because talking on the
telephone causes cancer. Richer countries have more phones and higher
cancer rates. The probable explanation for the excess cancer risk is that
women in richer countries have fewer children. Pregnancy—especially early
first pregnancy—is protective. Differences in diet and other lifestyle factors
across countries may also play some role.

Randomized controlled experiments minimize the problem of con-
founding. That is why causal inferences from randomized con-
trolled experiments are stronger than those from observational stud-
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4 Chapter 1

ies. With observational studies of causation, you always have to
worry about confounding. What were the treatment and control
groups? How were they different, apart from treatment? What
adjustments were made to take care of the differences? Are these
adjustments sensible?

The rest of this chapter will discuss examples: the HIP trial of mammography,
Snow on cholera, and the causes of poverty.

1.2 The HIP trial

Breast cancer is one of the most common malignancies among women in
Canada and the United States. If the cancer is detected early enough—before
it spreads—chances of successful treatment are better. “Mammography”
means screening women for breast cancer by X-rays. Does mammography
speed up detection by enough to matter? The first large-scale randomized
controlled experiment was HIP (Health Insurance Plan) in NewYork, followed
by the Two-County study in Sweden. There were about half a dozen other
trials as well. Some were negative (screening doesn’t help) but most were
positive. By the late 1980s, mammography had gained general acceptance.

The HIP study was done in the early 1960s. HIP was a group medical
practice which had at the time some 700,000 members. Subjects in the experi-
ment were 62,000 women age 40–64, members of HIP, who were randomized
to treatment or control. “Treatment” consisted of invitation to 4 rounds of
annual screening—a clinical exam and mammography. The control group
continued to receive usual health care. Results from the first 5 years of fol-
lowup are shown in table 1. In the treatment group, about 2/3 of the women
accepted the invitation to be screened, and 1/3 refused. Death rates (per 1000
women) are shown, so groups of different sizes can be compared.

Table 1. HIP data. Group sizes (rounded), deaths in 5 years of
followup, and death rates per 1000 women randomized.

Group Breast cancer All other
size No. Rate No. Rate

Treatment
Screened 20,200 23 1.1 428 21
Refused 10,800 16 1.5 409 38
Total 31,000 39 1.3 837 27

Control 31,000 63 2.0 879 28
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Observational Studies 5

Which rates show the efficacy of treatment? It seems natural to compare
those who accepted screening to those who refused. However, this is an ob-
servational comparison, even though it occurs in the middle of an experiment.
The investigators decided which subjects would be invited to screening, but
it is the subjects themselves who decided whether or not to accept the invita-
tion. Richer and better-educated subjects were more likely to participate than
those who were poorer and less well educated. Furthermore, breast cancer
(unlike most other diseases) hits the rich harder than the poor. Social status
is therefore a confounder—a factor associated with the outcome and with the
decision to accept screening.

The tip-off is the death rate from other causes (not breast cancer) in the
last column of table 1. There is a big difference between those who accept
screening and those who refuse. The refusers have almost double the risk of
those who accept. There must be other differences between those who accept
screening and those who refuse, in order to account for the doubling in the
risk of death from other causes—because screening has no effect on this risk.
One major difference is social status. It is the richer women who come in
for screening. Richer women are less vulnerable to other diseases, but more
vulnerable to breast cancer. So the comparison of those who accept screening
with those who refuse is biased, and the bias is against screening.

Comparing the death rate from breast cancer for those who accept screen-
ing and those who refuse is analysis by treatment received. This analysis is
seriously biased, as we have just seen. The experimental comparison is be-
tween the whole treatment group—all those invited to be screened, whether
or not they accepted screening—and the whole control group. This is the
intention-to-treat analysis.

Intention-to-treat is the recommended analysis.

HIP, which was a very well-run study, made the intention-to-treat analysis.
The investigators compared the breast cancer death rate in the total treatment
group to the rate in the control group, and showed that screening works.

The effect of the invitation is small in absolute terms: 63 − 39 = 24
lives saved (table 1). Since the absolute risk from breast cancer is small, no
intervention can have a large effect in absolute terms. On the other hand, in
relative terms, the 5-year death rates from breast cancer are in the ratio 39/63 =
62%. Followup continued for 18 years, and the savings in lives persisted
over that period. The Two-County study—a huge randomized controlled
experiment in Sweden—confirmed the results of HIP. So did other studies
in Finland, Scotland, and Sweden. That is why mammography became so
widely accepted.
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6 Chapter 1

1.3 Snow on cholera

A natural experiment is an observational study where assignment to
treatment or control is as if randomized by nature. In this section, we look
at one of the first natural experiments. In 1855, some twenty years before
Koch and Pasteur laid the foundations of modern microbiology, John Snow
discovered that cholera is a waterborne infectious disease. At the time, the
germ theory of disease was only one of many theories. Miasma (bad air) was
often said to cause epidemics. Imbalance in the humors of the body (black
bile, yellow bile, blood, phlegm) was an older explanation for disease. Poison
in the ground was an explanation that came into vogue slightly later.

Snow was a physician in London. By observing the course of the disease,
he concluded that cholera was caused by a living organism, which entered
the body with water or food, multiplied in the body, and made the body expel
water containing copies of the organism. The dejecta then contaminated food
or reentered the water supply, and the organism proceeded to infect other
victims. Snow explained the lag between infection and disease—a matter of
hours or days—as the time needed for the infectious agent to multiply in the
body of the victim. This multiplication is characteristic of life: inanimate
poisons do not reproduce themselves. (Of course, they may take some time
to do their evil: the lag is not compelling evidence.)

Snow developed a series of arguments in support of the germ theory. For
instance, cholera spread along the tracks of human commerce. Furthermore,
when a ship entered a port where cholera was prevalent, sailors contracted the
disease only when they came into contact with residents of the port. These
facts were easily explained if cholera was an infectious disease, but were hard
to explain by the miasma theory.

There was a cholera epidemic in London in 1848. Snow identified the
first or “index” case in this epidemic:

“a seaman named John Harnold, who had newly arrived by the Elbe
steamer from Hamburgh, where the disease was prevailing.” [p. 3]

He also identified the second case: a man named Blenkinsopp who took
Harnold’s room after the latter died, and became infected by contact with the
bedding. Next, Snow was able to find adjacent apartment buildings, one hard
hit by cholera and one not. In each case, the affected building had a water
supply contaminated by sewage, the other had relatively pure water. Again,
these facts are easy to understand if cholera is an infectious disease—but not
if miasmas are the cause.

There was an outbreak of the disease in August and September of 1854.
Snow made a “spot map,” showing the locations of the victims. These clus-
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Observational Studies 7

tered near the Broad Street pump. (Broad Street is in Soho, London; at the
time, public pumps were used as a source of drinking water.) By contrast,
there were a number of institutions in the area with few or no fatalities. One
was a brewery. The workers seemed to have preferred ale to water; if any
wanted water, there was a private pump on the premises. Another institution
almost free of cholera was a poor-house, which too had its own private pump.
(Poor-houses will be discussed again, in section 4.)

People in other areas of London did contract the disease. In most cases,
Snow was able to show they drank water from the Broad Street pump. For
instance, one lady in Hampstead so much liked the taste that she had water
from the Broad Street pump delivered to her house by carter.

So far, we have persuasive anecdotal evidence that cholera is an infec-
tious disease, spread by contact or through the water supply. Snow also used
statistical ideas. There were a number of water companies in the London of
his time. Some took their water from heavily contaminated stretches of the
Thames river. For others, the intake was relatively uncontaminated.

Snow made “ecological” studies, correlating death rates from cholera in
various areas of London with the quality of the water. Generally speaking,
areas with contaminated water had higher death rates. The Chelsea water
company was exceptional. This company started with contaminated water,
but had quite modern methods of purification—with settling ponds and careful
filtration. Its service area had a low death rate from cholera.

In 1852, the Lambeth water company moved its intake pipe upstream
to get purer water. The Southwark and Vauxhall company left its intake pipe
where it was, in a heavily contaminated stretch of the Thames. Snow made
an ecological analysis comparing the areas serviced by the two companies in
the epidemics of 1853–54 and in earlier years. Let him now continue in his
own words.

“Although the facts shown in the above table [the ecological analysis]
afford very strong evidence of the powerful influence which the drinking of
water containing the sewage of a town exerts over the spread of cholera, when
that disease is present, yet the question does not end here; for the intermixing
of the water supply of the Southwark and Vauxhall Company with that of
the Lambeth Company, over an extensive part of London, admitted of the
subject being sifted in such a way as to yield the most incontrovertible proof
on one side or the other. In the subdistricts enumerated in the above table
as being supplied by both Companies, the mixing of the supply is of the
most intimate kind. The pipes of each Company go down all the streets,
and into nearly all the courts and alleys. A few houses are supplied by one
Company and a few by the other, according to the decision of the owner or
occupier at that time when the Water Companies were in active competition.
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8 Chapter 1

In many cases a single house has a supply different from that on either side.
Each company supplies both rich and poor, both large houses and small;
there is no difference either in the condition or occupation of the persons
receiving the water of the different Companies. Now it must be evident that,
if the diminution of cholera, in the districts partly supplied with improved
water, depended on this supply, the houses receiving it would be the houses
enjoying the whole benefit of the diminution of the malady, whilst the houses
supplied with the [contaminated] water from Battersea Fields would suffer
the same mortality as they would if the improved supply did not exist at all.
As there is no difference whatever in the houses or the people receiving the
supply of the two Water Companies, or in any of the physical conditions
with which they are surrounded, it is obvious that no experiment could have
been devised which would more thoroughly test the effect of water supply
on the progress of cholera than this, which circumstances placed ready made
before the observer.

“The experiment, too, was on the grandest scale. No fewer than three
hundred thousand people of both sexes, of every age and occupation, and of
every rank and station, from gentlefolks down to the very poor, were divided
into groups without their choice, and in most cases, without their knowledge;
one group being supplied with water containing the sewage of London, and
amongst it, whatever might have come from the cholera patients; the other
group having water quite free from such impurity.

“To turn this grand experiment to account, all that was required was
to learn the supply of water to each individual house where a fatal attack of
cholera might occur.” [pp. 74–75]

Snow’s data are shown in table 2. The denominator data—the number of
houses served by each water company—were available from parliamentary
records. For the numerator data, however, a house-to-house canvass was
needed to determine the source of the water supply at the address of each
cholera fatality. (The “bills of mortality,” as death certificates were called at
the time, showed the address but not the water source for each victim.) The
death rate from the Southwark and Vauxhall water is about 9 times the death
rate for the Lambeth water. Snow explains that the data could be analyzed as

Table 2. Death rate from cholera by source of water. Rate per
10,000 houses. London. Epidemic of 1853–54. Snow’s table IX.

No. of Houses Cholera Deaths Rate per 10,000

Southwark & Vauxhall 40,046 1,263 315
Lambeth 26,107 98 37
Rest of London 256,423 1,422 59
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Observational Studies 9

if they had resulted from a randomized controlled experiment: there was no
difference between the customers of the two water companies, except for the
water. The data analysis is simple—a comparison of rates. It is the design of
the study and the size of the effect that compel conviction.

1.4 Yule on the causes of poverty

Legendre (1805) and Gauss (1809) developed regression techniques to
fit data on orbits of astronomical objects. The relevant variables were known
from Newtonian mechanics, and so were the functional forms of the equations
connecting them. Measurement could be done with high precision. Much
was known about the nature of the errors in the measurements and equations.
Furthermore, there was ample opportunity for comparing predictions to real-
ity. A century later, investigators were using regression on social science data
where these conditions did not hold, even to a rough approximation—with
consequences that need to be explored (chapters 4–8).

Yule (1899) was studying the causes of poverty. At the time, paupers
in England were supported either inside grim Victorian institutions called
“poor-houses” or outside, depending on the policy of local authorities. Did
policy choices affect the number of paupers? To study this question, Yule
proposed a regression equation,

(1) �Paup = a + b×�Out + c×�Old + d×�Pop + error.

In this equation,

� is percentage change over time,
Paup is the number of paupers,
Out is the out-relief ratio N/D,

N = number on welfare outside the poor-house,
D = number inside,

Old is the population over 65,
Pop is the population.

Data are from the English Censuses of 1871, 1881, 1891. There are two �’s,
one for 1871–81 and one for 1881–91. (Error terms will be discussed later.)

Relief policy was determined separately in each “union” (an administra-
tive district comprising several parishes). At the time, there were about 600
unions, andYule divided them into four kinds: rural, mixed, urban, metropoli-
tan. There are 4×2 = 8 equations, one for each type of union and time period.
Yule fitted his equations to the data by least squares. That is, he determined
a, b, c, and d by minimizing the sum of squared errors,

∑ (
�Paup − a − b×�Out − c×�Old − d×�Pop

)2
.
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10 Chapter 1

The sum is taken over all unions of a given type in a given time period, which
assumes (in effect) that coefficients are constant for those combinations of
geography and time.

Table 3. Pauperism, Out-relief ratio, Proportion of Old, Population.
Ratio of 1881 data to 1871 data, times 100. Metropolitan Unions,
England. Yule (1899, table XIX).

Paup Out Old Pop

Kensington 27 5 104 136
Paddington 47 12 115 111
Fulham 31 21 85 174
Chelsea 64 21 81 124
St. George’s 46 18 113 96
Westminster 52 27 105 91
Marylebone 81 36 100 97
St. John, Hampstead 61 39 103 141
St. Pancras 61 35 101 107
Islington 59 35 101 132
Hackney 33 22 91 150
St. Giles’ 76 30 103 85
Strand 64 27 97 81
Holborn 79 33 95 93
City 79 64 113 68
Shoreditch 52 21 108 100
Bethnal Green 46 19 102 106
Whitechapel 35 6 93 93
St. George’s East 37 6 98 98
Stepney 34 10 87 101
Mile End 43 15 102 113
Poplar 37 20 102 135
St. Saviour’s 52 22 100 111
St. Olave’s 57 32 102 110
Lambeth 57 38 99 122
Wandsworth 23 18 91 168
Camberwell 30 14 83 168
Greenwich 55 37 94 131
Lewisham 41 24 100 142
Woolwich 76 20 119 110
Croydon 38 29 101 142
West Ham 38 49 86 203
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