Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accommodation</td>
<td>85</td>
</tr>
<tr>
<td>accuracy</td>
<td>198, 220, 244</td>
</tr>
<tr>
<td>acoustic skills</td>
<td>31</td>
</tr>
<tr>
<td>adaptation</td>
<td>190–1</td>
</tr>
<tr>
<td>adult–child interactions</td>
<td>192</td>
</tr>
<tr>
<td>adults with dyslexia</td>
<td>264–7</td>
</tr>
<tr>
<td>as avid readers</td>
<td>269–71</td>
</tr>
<tr>
<td>development of high literacy</td>
<td>268</td>
</tr>
<tr>
<td>gendered interests</td>
<td>271–2</td>
</tr>
<tr>
<td>pathways to literacy</td>
<td>267–8</td>
</tr>
<tr>
<td>retrospective deduction from</td>
<td>18–19, 23, 154</td>
</tr>
<tr>
<td>study of mathematics and science</td>
<td>273–4, 277–8</td>
</tr>
<tr>
<td>Aequus AspireREADER program</td>
<td>290</td>
</tr>
<tr>
<td>agraphia</td>
<td>18, 63</td>
</tr>
<tr>
<td>algebra courses</td>
<td>273–4, 277</td>
</tr>
<tr>
<td>alphabetic principle</td>
<td>17</td>
</tr>
<tr>
<td>Alzheimer Disease</td>
<td>39</td>
</tr>
<tr>
<td>animal models</td>
<td>47–53, 141, 142</td>
</tr>
<tr>
<td>anterior–posterior gradients of development</td>
<td>126</td>
</tr>
<tr>
<td>aphasia</td>
<td>135</td>
</tr>
<tr>
<td>APM analysis</td>
<td>42</td>
</tr>
<tr>
<td>Arbib, M.</td>
<td>142–3</td>
</tr>
<tr>
<td>Ashby, J.,</td>
<td>83</td>
</tr>
<tr>
<td>Ashley, L.,</td>
<td>200</td>
</tr>
<tr>
<td>Asperger’s syndrome</td>
<td>287</td>
</tr>
<tr>
<td>assistive technologies</td>
<td>289, 290–1</td>
</tr>
<tr>
<td>attentional capacity</td>
<td>85, 86, 88</td>
</tr>
<tr>
<td>attractor pattern</td>
<td>113</td>
</tr>
<tr>
<td>Aubertin, E.</td>
<td>134</td>
</tr>
<tr>
<td>auditory processing</td>
<td>64, 84</td>
</tr>
<tr>
<td>in dyslexics</td>
<td>45, 151–2</td>
</tr>
<tr>
<td>fMRI studies</td>
<td>161–2</td>
</tr>
<tr>
<td>integration with visual</td>
<td>107–9</td>
</tr>
<tr>
<td>see also acoustic skills; deaf people;</td>
<td></td>
</tr>
<tr>
<td>listening comprehension</td>
<td></td>
</tr>
<tr>
<td>autism</td>
<td>287</td>
</tr>
<tr>
<td>automated processes</td>
<td>23, 25, 26</td>
</tr>
<tr>
<td>Baldwin, J. M.</td>
<td>85</td>
</tr>
<tr>
<td>behavior–brain relations</td>
<td>see brain–behavior relations</td>
</tr>
<tr>
<td>behavioral development</td>
<td></td>
</tr>
<tr>
<td>empiricist approach</td>
<td>81</td>
</tr>
<tr>
<td>genes and</td>
<td>37–40</td>
</tr>
<tr>
<td>rationalist approach</td>
<td>86</td>
</tr>
<tr>
<td>sociohistoric approach</td>
<td>91</td>
</tr>
<tr>
<td>see also cognitive development</td>
<td></td>
</tr>
<tr>
<td>behavioral phenotype of dyslexia</td>
<td>43–5</td>
</tr>
<tr>
<td>behavioral research</td>
<td></td>
</tr>
<tr>
<td>on learning disorders</td>
<td>83</td>
</tr>
<tr>
<td>on reading disorders</td>
<td>87–9, 92–4</td>
</tr>
<tr>
<td>‘being with’ approach</td>
<td>188, 189–90</td>
</tr>
<tr>
<td>Bender, L.</td>
<td>66</td>
</tr>
<tr>
<td>Bereiter, C.</td>
<td>94</td>
</tr>
<tr>
<td>Biddle, K.</td>
<td>71–2</td>
</tr>
<tr>
<td>biology</td>
<td>see neuroanatomy; neurological development; neurological research</td>
</tr>
<tr>
<td>Birch, H. G.</td>
<td>66</td>
</tr>
<tr>
<td>blind students</td>
<td>286–7</td>
</tr>
<tr>
<td>Bowers, P.</td>
<td>70, 71–2</td>
</tr>
<tr>
<td>Braille</td>
<td>286–7</td>
</tr>
<tr>
<td>brain, anatomy</td>
<td>see neuroanatomy development</td>
</tr>
<tr>
<td>see also neurological development</td>
<td></td>
</tr>
<tr>
<td>study of see neurological research</td>
<td></td>
</tr>
<tr>
<td>neuropsychological research</td>
<td></td>
</tr>
<tr>
<td>brain damage</td>
<td></td>
</tr>
<tr>
<td>and language processing</td>
<td>21</td>
</tr>
<tr>
<td>see also compensation; lesion studies</td>
<td></td>
</tr>
<tr>
<td>brain volume</td>
<td>30–3</td>
</tr>
<tr>
<td>brain-acts-on-world approach</td>
<td>185</td>
</tr>
<tr>
<td>see also ‘looking at’ approach</td>
<td></td>
</tr>
<tr>
<td>brain-context-development approach</td>
<td>186–7</td>
</tr>
<tr>
<td>whole child</td>
<td>190–1</td>
</tr>
<tr>
<td>see also ‘being with’ approach</td>
<td></td>
</tr>
<tr>
<td>Broca, P.</td>
<td>134</td>
</tr>
<tr>
<td>Broca’s area</td>
<td>135</td>
</tr>
</tbody>
</table>
328 Index

Brown, A. L., 256, 258
Byrne, B., 200, 210
Camp, D., 277
Caramazza, A., 139
case studies, 196–8
clinical analysis, 185–90, 229–33, 243
complex figure tasks, 229, 230, 231, 246–7
double dissociation in interpreting, 284–8
for interdisciplinary dialogue, 182–3, 248–9
making videotape, 183–5
motor tapping tasks, 229, 233, 246–7
nature of disabilities, 227–8, 244
paragraph reading task, 220, 221, 222, 230, 244–6
rapid naming tasks, 205–6, 219, 220, 221, 222, 248
word reading tasks, 198–205, 219–21, 222
CAST (Center for Applied Special Technology), 282, 288, 290
cerebral asymmetry, 20, 46, 48, 137, 230
Chall, J. S., 65, 262
child–adult interactions, 192
childhood maltreatment, 176–7
children, applying adult data to, 18–19, 23, 154
see also case studies
Clements, S. D., 66
clinical analysis see case studies; double dissociation; whole child approach
clinician, role of, 192–3
Cobb, C., 277
cognitive abilities, study of, 228
cognitive deficits, genetic studies of, 38–9
and neuroanatomy, 48–9
and reading disorders, 43–4, 53, 234
cognitive development, growth cycles, 115, 119–22
link with brain development, 114–15, 116–19
see also behavioral development; dynamic models of development
cognitive function, link with genes, 37–40
cognitive science, neuroscience, education and, 4–6, 7
coherence see EEG collaboration see interdisciplinary dialogue
color naming, 69
compensation, 21, 25–7, 137, 154–5, 231, 233
complex figure tasks, 229, 230, 231, 246–7
comprehension, 27, 244–6, 256–7, 258–60, 270
calculative aphasia, 135
constraint, and plasticity, 7–9
constructual dyspraxia, 144
constructivist webs of development, 103–9
constructivist approach see rationalist approach
design, in brain–behavior relations, 185–7, 257
future research, 234–5
role of clinician, 192–3
to gain meaning, 270
whole child approach, 190–1
coordination, 86, 88
copying task see complex figure tasks
cortical connectivity, 86–7, 135
cycles of growth, 115–19
impact of maltreatment on, 176–7
and language processing, 142
and learning disorders, 169–75
research methodology, 169–70
cortical ectopias, 46–53
Critchley, M., 66
Csikszentmihalyi, M., 271, 278
culture see sociohistoric approach
cusp-catastrophe analysis, 114
cycle of learning in reading acquisition, 209–11
cycles of development see development
Damasio, H., 138–9
deficit people, 67, 136–7, 286
decoding, 233
see also rapid naming tasks; word reading tasks
Dejerine, J., 20, 63
Demb, J., 161
Denckla, M. B., 69
Denenberg, V., 152
development, of brain see neurological development
cognitive cycles, 115, 119–22
dynamic models of, constructing, 109–14
constructive webs, 103–9
hierarchical skills, 112–14
and learning disorders, 122–3
linear model of, 103–4, 267
mindbrain correlations, 114–15, 116–19
role of genes, 38, 125
developmental pathways, 267–8
developmental psychology, 81, 233–5
developmental range, 120–1
Diagnostic Assessments of Reading with Trial Teaching Strategies (DARTT), 268
differentiation, 86, 88
diffusion tensor imaging, 145
Index

disconnection, 20
Domgaard, R. M., 208
double dissociation, 283–8
Double-Deficit Hypothesis, 70, 72, 207–8, 265
drawing task see complex figure tasks
dynamic modeling of action, 111
dynamic models of development, 102–3
constructing, 109–14
constructive webs, 103–9
hierarchical skills, 112–14
and learning disorders, 122–3
dynamic skill model, 119
dyslexia,
in adults see adults with dyslexia
behavioral phenotype, 43–5
biological bases of, 18
see also neuroanatomy
fMRI studies, 137, 148–9, 155–62
approaches and goals, 152–3
methodological confounds, 153–5
future research on, 73
genetic studies of, 40–3
and imaging studies, 137–41
multiple features of, 65, 144, 149–52
nested model of, 28–9
research history,
early, 63–5, 133
middle, 65–7
recent, 67–73
ectopias see cortical ectopias
Eden, G. F., 161
educational intervention,
analyzing case studies, 200–1, 203, 205
applying research to, 72–3, 151, 261–2, 282–3, 288–91
approaches to, 93–4, 257–60
assistive technologies, 289, 290–1
cognitive science, neuroscience and, 4–6, 7
future policy, 238
impact of, 210–11, 235
remedial technologies, 288–9
universal design, 290–1
use of twin texts, 276–7
EEG (electroencephalography), 115, 118, 124
coherence, 87, 124, 126–7, 169–70, 171, 172–4, 176
empiricist approach, 81–4
energy discontinuities in brain, 118–19
environment see context
evolutionary approach, 16–19, 28–9
integrating perspectives, 24–7
experience, 6, 82, 87, 176–7, 234–5
experimental theoretical psychology, 111
Farmer, M., 152
Fast ForWord program, 151, 288–9
Field, L. L., 42
Fielding-Barnsley, R., 200
Filides, L. G., 64
Fink, R. P., 109, 265
Fischer, K. W., 70, 86, 88, 116, 267–8
Fisher, S. E., 42
flow experience, 271
fluency, 202, 205, 209–11, 222, 244–6, 266
see also naming speed; Test of Word Reading Fluency
fMRI (functional magnetic resonance imaging), 136, 137, 148–9, 162–3
methodological confounds, 153–5
research approaches and goals, 152–3
research relating to dyslexia, 155–62
Frith, U., 40
frontal–posterior coherence, 87, 89
functional level of development, 120–1
functional neuroimaging studies, 8
see also fMRI
Galaburda, A. M., 20, 23, 68, 84
Gayan, J., 42
Gazzaniga, M. A., 141–2
gender,
and heritability of dyslexia, 41
and impact of child abuse, 177
and reading interests, 271–2, 273, 275–6
see also sex differences
genes,
and cognitive disorders, 38–9
and cognitive function, 37–40
for reading/writing, 18
role in prenatal development, 125
genetic basis of dyslexia,
ectopias, 50–3
problems of studying, 40
studies, 40–3
Geschwind, N., 20, 63, 68, 69, 283
Grigorenko, E. L., 42
growth cycles see development
Guttman scalogram method, 105
Habib, M., 154
hearing impaired, 67, 136–7, 286
Hebb, D. O., 82
heritability, and dyslexia, 40–1
Herman, A. E., 49
hierarchical skills, 112–14
Hinshelwood, J., 64
Hutslar, J. J., 141–2
hyperlexia, 27
Index

imaging see neuroimaging techniques
instruction see educational intervention
intellectual leadership, 94
interdisciplinary dialogue, 4–6, 181–2
and modes of clinical analysis, 185–91
use of case studies, 182–5, 187–90, 248–9
interests and motivation, 269–70
discovering interests, 274–6
gender differences, 271–2, 275–6
importance of access, 277–8
study of mathematics and science, 273–4, 277–8
intervention see educational intervention
IQ-achievement discrepancy formula, 237
Johnson, D. J., 66
Kant, I., 84
Kaplan, B. J., 42
Kemper, T. L., 20
Klein, R., 152
Knight, C. C., 88
ladder metaphor of development, 103–4, 267
language,
genetic basis, 37–8
see also linguistic deficit
Language Learning Impairment (LLI), 151
language processing,
brain bases of,
cellular and circuitry level, 141–3
and dyslexia, 144–6
imaging studies, 136–41
localization in adults and children, 21
language production,
brain bases of, 134–6
see also spoken language
Larsen, F., 153
lateralization, 64, 94
see also cerebral asymmetry; localization
learning,
reading acquisition and cycles of, 209–11
role of genes, 38
Learning Disabilities Research Center
(LDRC), 168
learning disorders, 13
approaches to, 185–7
case studies, 187–90, 196–8
and cortical connectivity, 169–75
dynamic models of, 122–3
and linear model of development, 104
research on, 5, 80–1
empiricist, 83
rationalist, 88–90
role of clinician, 192–3
whole child approach, 190–1
see also reading disorders
lesion studies, 134–5, 136, 138, 139, 141, 168, 283–4
Levy, B. A., 210
Liberman, I. Y., 67
linear model of development, 103–4, 267
linguistic deficit,
dyslexia as, 43–4
and neuroanatomy, 48–9
listening comprehension, 259
Livingstone, M., 23
Livingstone, M. S., 23, 68
localization,
adult/child differences, 21–3
see also cerebral asymmetry; lateralization
localization perspective, 19–24
‘looking at’ approach, 185, 187–8, 189, 190
Lovett, M. W., 210
Lundberg, I., 150
Luria, A. R., 91–2
McDermott, R. P., 94
macro-columns, 142
magnetic resonance imaging see MRI
magnetoencephalography (MEG), 161
magnocellular deficit hypothesis, 150
magnocellular systems, 68–9, 71
mathematics, study of, 273–4, 277–8
meaning see comprehension
media, reading types of, 285
medio-lateral gradients of development, 126
methodology and methods, 81
in cortical activity research, 169–70
double dissociation, 283–8
dynamic models of development, 109–14, 122–3
in fMRI research, 152–5
of linear model, 103, 104
see also case studies; neuroimaging
techniques
mind see cognitive deficits; cognitive
development
mindbrain development see development
mirror neurons, 142–3
Mody, M., 152
Morgan, W. P., 64
Morris, R. D., 70, 229
Moses, R. P., 277
motivation to read see interests and motivation
motor disorders, 287
motor movements,
and brain volume, 31
and mirror neurons, 142–3
motor tapping tasks, 229, 233, 246–7
MRI (magnetic resonance imaging), 30, 136, 138
see also fMRI
Myklebust, H. R., 66
naming deficits, and neuroanatomy, 138–9
naming speed, and double deficit hypothesis, 207–8
rapid naming tasks, 205–6, 219, 220, 221, 222, 248
research on, 69–72
Nelson-Denny Reading Test (ND), 268
neo-Piagetian approach, 86
nested model of reading, 25–7, 28–9
neuroanatomy, brain volume, 30–3
do dyslexia, 20, 45–7, 133, 144–6, 235–6
animal models, 47–50
genetics of animal ectopias, 50–3
re-examination of, 68–72
imaging see neuroimaging techniques
language production, 134–6
see also localization
neuroimaging techniques, 71, 115, 135, 136–41, 145, 161
see also EEG; fMRI; MRI; PET
neurological development, and coherence, 126–7, 173–4
empiricist approach to, 82
growth cycles, 115–19
postnatal, 126
prenatal, 125
link with cognitive development, 114–15, 116–19
rationalist approach, 86–7
role of experience, 176–7
sociohistoric approach, 91–2
spatial gradients, postnatal, 126
prenatal, 124–5
neurological research, 96, 168
empiricist, 83–4
rationalist, 88–90
sociohistoric, 94
neuronal size, 47, 49, 141–2
neuropsychological research, 228
cognitive science, education and, 4–6, 7
double dissociation in, 283–8
educational application of, 282–3, 288–91
Neville, H., 136
non-fiction texts, 276
non-word reading tasks, 199–200, 201, 203, 219–20, 221, 222
observation see ‘looking at’ approach
Olson, D. R., 92
optimal level of development, 120–1
oral language see spoken language
oral reading task see paragraph reading task
orthographic encoding, 137, 138
orthographic representations, 64, 71, 137–8, 267
Orton, S. T., 64–5
Palinscar, A. S., 258
paragraph reading task, 220, 221, 222, 230, 244–6
parallel distributed processes, 115
Partially Ordered Scaling of Items (POSI), 105–9
perceptual deficit, dyslexia as, 43–5, 53
and neuroanatomy, 49
see also auditory processing; visual processing
PET (positron emission tomography), 139, 143
phenotype of dyslexia, behavioral, 43–5
neuroanatomical, 45–50
phone awareness, 68, 83, 150, 200, 207–8, 209–11
phonemic decoding, 207–8, 209–11, 244
phonics-based methods, 65, 200
phonological code, 206
phonological deficit, 83–4, 207–8, 233, 249
in adults, 268
in case studies, 223, 231
in dyslexics, 43, 44, 45, 149–50
fMRI studies of, 155–61
phonological encoding, 137, 138
phonological processing, defining, 206–7
research on, 67–8
phonological-core variable-difference model, 231
Piaget, J., 85–6, 122
Piaget effect, 114
Piercy, M., 151–2
plasticity, 7–9, 21, 154, 176
see also compensation
Poldrack, R., 162
positron emission tomography see PET
postmortem studies, 141
postnatal development, 126
predator–prey models, 114
prenatal development, 124–5
psycholinguistic studies of dyslexia, 67–8
psychological development see developmental psychology
pyramidal neurons, 141–2
Rabinovitch, R. D., 66
rapid naming tasks, 205–6, 219, 220, 221, 222, 248
Rasch scaling, 109
rationalist (structuralist) approach, 84
reading, assessing developmental webs for, 105–9
as captivating, 270–1
case studies see case studies
diverse processes involved in, 24–7, 40, 62, 95, 102
evolution and history of, 17–19
localization perspective of, 19–24
motivated by personal interest, 269–70
discovering interests, 274–6
gender differences, 271–2, 275–6
importance of access, 277–8
and phonological processing, 206
reading acquisition, cycle of learning, 209–11
reading disorders, approaches to evaluation, 256–8
brain bases see neuroanatomy
case studies see case studies
detection of, 237, 238, 256
and developmental psychological research, 233–5
diverse processes involved in, 24–7, 28–9, 62, 65, 144–6, 237, 248–9, 284–5
interventions see educational intervention
link with other deficits, 284–5
misconceptions, 236–7
research, 5–6
future, 73
neuroscientific, 235–6
rationalist, 87–9
sociohistoric, 92–4
research history, early, 63–5, 133
modern, 65–7
recent, 67–73
retrospective deduction, 18–19, 23, 154
subtypes, 229, 231, 232
see also dyslexia
reading instruction see educational intervention
Reading Reform Foundation of New York, 261
reading skills, of adults with dyslexia, 268
continuum of, 237
hierarchical model, 112–14
and localization, 22–3
real word reading tasks, 199–200, 201, 203, 219, 221, 222
Reciprocal Teaching, 258, 259
reflective abstraction, 85
remedial instruction see educational intervention
remedial technologies, 288–9
Rey-Osterrieth Complex Figure (ROCF), 229, 230, 231, 246–7
Rieben, L., 88
Rizzolatti, G., 142–3
romantic fiction, 275–6
Rose, S. P., 86, 116
Rosen, G. D., 49, 68
Ruff, S., 162
Scarborough, H. S., 208
Scardamalia, M., 94
schema theory, 270, 272
Schilder, P., 65
science, study of, 273–4, 277–8
self-regulatory function, 92
self-teaching hypothesis, 220
semantic encoding, 137, 138
sensory deficit, dyslexia as, 43–5, 53
and neuroanatomy, 49
see also auditory processing; visual processing
sex differences, in development, 119
and neuroanatomy, 31, 49–50, 54
see also gender
sexual abuse, 176, 177
Shankweiler, D. P., 67
Share, D. L., 220
Shaywitz, B. A., 137–8
Shaywitz, S. E., 137–8, 237, 262
sign language, 136–7, 286
skill development see cognitive development
skills see reading skills
Smith, S. D., 41
socioeconomic status, 92–4
sociohistoric approach, 90–5
speeded processing, 83, 88, 95
see also naming speed
spelling, 202, 205, 221
spoken language, brain bases of, 134–5
deficit, 149, 189
development of literacy and, 27
Index

evolution of, 17
and phonological processing, 206
standardized testing, 192
Stanovich, K. E., 220, 222, 231, 234
Stein, J., 144
stereophosymbolia, 64
structuralist approach.see rationalist approach
supportive context, 120–1, 188
Tallal, P., 151–2, 288
technologies,
assistive technologies, 289, 290–1
remedial technologies, 288–9
Temple, E., 162
temporal rate processing deficit, 151–2,
161–2
Test of Word Reading Fluency, 196, 199
Teuber, H.-L., 283
thalamus, 49–50
Thatcher, R. W., 86–7, 88, 95, 114, 116, 126,127
theoretical approaches, 96
empiricist, 81–4
rationalist, 84
sociohistoric, 90–5
Thinking Reader program, 290
training,
impact on brain activation patterns, 154–5
see also educational intervention
transcranial magnetic stimulation (TMS), 143
twin studies, 41
twin texts, 276–7
twisted symbols, 64
universal design, 290–1
van Baal, C., 127
visual processing, 84
in dyslexics, 45, 63–4, 150–1
fMRI studies of, 161
integration with auditory, 107–9
and mirror neurons, 142–3
and naming speed, 71
sign language, 136–7
Vygotsky, L. S., 91, 120
Walsh, V., 144
web-like pathway of development, 267, 268
Wechsler Intelligence Scale for Children, 248
Wenger, J., 248
Wernicke, K., 135
Wernicke’s area, 135
whole child approach, 186–7, 190–1
whole-language movement, 72
WiggleWorks program, 290
Williams Syndrome, 39
Wise, B., 210
Wittelson, S., 94
Wolf, M., 70, 71–2, 83, 207
Woodcock-Johnson Psychoeducational Battery, 197, 199, 200
word blindness, 64
word reading tasks, 198–205, 219–21, 222
words, encountering new, 203
working memory, 86, 88
writing task, 229, 230, 247
written language, 17–18, 24
zone of proximal development, 120