PRACTICAL SIGNAL PROCESSING

The principles of signal processing are fundamental to the operation of everyday devices such as digital cameras, mobile telephones and digital audio players. This book introduces the basic theory of digital signal processing, placing a strong emphasis on the use of techniques in real-world applications. The author uses intuitive arguments rather than mathematical ones wherever possible, reinforced by practical examples and diagrams.

The first part of the book covers sampling, quantisation, the Fourier transform, filters, Bayesian methods and numerical considerations. These ideas are then developed in the second part, illustrating how they are used in audio, image, and video processing and compression, and in communications. The book concludes with methods for the efficient implementation of algorithms in hardware and software. Throughout, links between various signal processing techniques are stressed and real-world examples showing the advantages and disadvantages of the different approaches are presented, enabling the reader to choose the best solution to a given problem.

With over 200 illustrations and over 130 exercises (including solutions), this book will appeal to practitioners working in any branch of signal processing, as well as to undergraduate students of electrical and computer engineering.

Mark Owen received his Ph.D. in Speech Recognition from Cambridge University in 1992, after which he has worked in industry on digital signal processing applications in video, audio and radar. He is currently a freelance consultant in this, and related, fields.
PRACTICAL SIGNAL PROCESSING

MARK OWEN
Contents

Preface
ix

Part I Foundations

1 Introduction
 1.1 What is a signal?
 1.2 Domain and range of a signal
 1.3 Converting signals from one form to another
 1.4 Processing signals
 1.5 Notation

2 Sampling
 2.1 Regular sampling
 2.2 What is lost in sampling?
 2.3 Examples of aliasing
 2.4 Negative frequencies
 2.5 The Nyquist limit
 2.6 Irregular sampling

3 Conversion between analogue and digital
 3.1 A simple digital signal processing system
 3.2 Non-linear quantisation
 3.3 How many bits do we need?
 3.4 Dither
 3.5 Non-ideal conversion

4 The frequency domain
 4.1 Measuring rotational speed
 4.2 More complicated motion
 4.3 Interpreting the Fourier transform

© Cambridge University Press
www.cambridge.org
Contents

4.4 How many Fourier coefficients are there? 43
4.5 Reconstructing a signal from its Fourier transform 43
4.6 Real signals 44
4.7 Dealing with non-periodic signals 49
4.8 The fast Fourier transform 53

5 Filters 63
5.1 Smoothing a signal 63
5.2 Analysing a filter 66
5.3 Convolution in the frequency domain 74
5.4 Correlation 76
5.5 Designing FIR filters 77
5.6 Interpolation 83
5.7 Infinite impulse response filters 94
5.8 Filtering complex sequences 100

6 Likelihood methods 104
6.1 Probability and conditional probability 104
6.2 Probability and signal processing 109
6.3 Noise 111

7 Numerical considerations 124
7.1 Fixed-point representations 124
7.2 Negative numbers in fixed-point representations 135
7.3 Floating-point representations 139
7.4 Choosing between fixed point and floating point 143

Part II Applications 147

8 Audio 149
8.1 The ear 149
8.2 Sample rates and conversion 149
8.3 Audio in the frequency domain 152
8.4 Compression of audio signals 154
8.5 Pitch extraction 163
8.6 Delta–sigma conversion 172

9 Still images 178
9.1 Luminance and chrominance 178
9.2 Gamma 179
9.3 An image as a signal 180
9.4 Filtering an image 185
9.5 The discrete cosine transform 193
Contents

9.6 JPEG compression for continuous-tone images 198
9.7 The discrete wavelet transform 202
9.8 Image scaling 209
9.9 Image enhancement 213
9.10 Edge detection 215
9.11 Processing of bilevel images 217
9.12 Pattern recognition 223

10 Moving images 231
10.1 Standard video formats 231
10.2 Deinterlacing 234
10.3 Standards conversion 239
10.4 Motion estimation 241
10.5 MPEG-2 video compression 246

11 Communications 253
11.1 Amplitude modulation 254
11.2 Frequency modulation 260
11.3 Quadrature amplitude modulation 263
11.4 Spread spectrum schemes 287

12 Implementations 299
12.1 Software implementations 300
12.2 Processor architectures 302
12.3 Hardware implementations 307
12.4 Bit-serial arithmetic 313

Answers 323
Index 329
Preface

This is a book you can read in the park, on the beach, at the bus stop – or even in the bath.

The book is in two parts. The first part takes you step-by-step through the fundamental ideas of digital signal processing, while the second part shows how these ideas are used in a wide range of practical situations. My aim is that by the end of the book you will understand many of the signal processing algorithms and techniques that are essential to everyday devices such as digital cameras, modems, digital set-top boxes, mobile telephones and digital audio players. I have used examples drawn from the operation of such devices to help explain points in the text.

You do not need to know any calculus to understand any of the ideas discussed. A basic understanding of trigonometry and of arithmetic on complex numbers is necessary, however; and a very basic knowledge of the principles of electronic circuits is helpful, but by no means essential.

If you are a student, I hope that the approach this book takes will give you a more concrete and more intuitive grasp of the principles of digital signal processing than a purer mathematical treatment would. If you are a practising engineer or programmer with a particular problem to solve, I hope that the book helps you understand the problem and decide on the right way to tackle it. And if you are just interested in the subject for its own sake, I hope you enjoy the book.

There are exercises at the end of each chapter. Some of them you can probably do in your head; for some you might need pencil and paper; and for some you will need to write a short program. Some are slightly more ambitious programming projects. A few ask you to criticise inappropriate solutions to signal processing problems suggested by a hypothetical friend who has clearly not read this book: if you have any friends in this position you can remedy the situation by buying them a copy. Please try the easier exercises and at least think about how you would go about the harder ones; and please don’t take your computer into the bath.
Preface

Acknowledgements

I am grateful to Philip Meyler and staff at Cambridge University Press for their work in editing and producing this book; to Laurence Nicolson, Alex Scott, Alex Selby, Roger Sewell, Mark Wainwright and Jason Wong, who all shaped the book for the better in various ways; and to Laura Doherty and Martin Oldfield, who read early versions of the manuscript and provided many helpful comments.