Nonequilibrium Ecology

Ecology has long been shaped by ideas that stress the sharing of resources and the competition for those resources, and by the assumption that populations and communities typically exist under equilibrium conditions in habitats saturated with both individuals and species. However, much evidence contradicts these assumptions and it is likely that nonequilibrium is much more widespread than might be expected. This book is unique in focusing on nonequilibrium aspects of ecology, providing evidence for nonequilibrium and equilibrium in populations (and metapopulations), in extant communities and in ecological systems over evolutionary time, including nonequilibrium due to recent and present mass extinctions. The assumption that competition is of overriding importance is central to equilibrium ecology, and much space is devoted to its discussion. As communities of some taxa appear to be shaped more by competition than others, an attempt is made to find an explanation for these differences.

Klaus Rohde is Professor Emeritus at the University of New England, Australia.
Nonequilibrium Ecology

KLAUS ROHDE
School of Environmental Sciences and Natural Resources Management,
University of New England, Australia
Für Ursula
Contents

Acknowledgements
page x

Introduction
1

1 **Concepts and problems**
3
Concepts of equilibrium (balance of nature) and nonequilibrium
3
History of equilibrium and nonequilibrium ecology: some milestones in the evolution of ideas
6
Regulation and equilibrium in ecological systems: some experiments and a critical discussion of arguments given in favour of equilibrium
13
Nonequilibrium in populations and metapopulations: some empirical studies
17
Defining the problem
24

2 **Nonequilibrium in communities**
27
Definition and evolution of communities
27
Equilibrium, and disturbance leading to nonequilibrium
32
Species nonsaturation and nonequilibria
39

3 **Interspecific competition: definition and effects on species**
49
Definition and types of competition, resource limitation as its main cause
49
Effects of competition on species
52

4 **Interspecific competition: effects in communities and conclusion**
70
General aspects and conclusion
78
Contents

5 Noncompetitive mechanisms responsible for niche restriction and segregation 81
 Evidence for niche restriction even in the absence of potentially interacting species, and mechanisms responsible 81
 Niche segregation to ensure reinforcement of reproductive barriers 85

6 Patterns over evolutionary time, present mass extinctions 90
 The fossil record and interpretations 90
 Recent and present extinctions 95

7 Some detailed examples at the population/metapopulation level 99
 Reef fishes: density dependence and equilibrium in populations? 99
 Kangaroos: fluctuations in rainfall are the primary determinant of population size, but there is some “regulation” by negative feedback 104

8 Some detailed examples at the community level 109
 Tropical rainforests: how is diversity maintained? 109
 Ectoparasites of marine fish: non-interactive unsaturated communities 121
 Insects on bracken, and wasps: type I communities with little evidence for interspecific competition 127
 Larval trematodes in snails: evidence for interspecific competition (and predation) in infracommunities, and for nonequilibrium conditions 131

9 Some detailed biogeographical/macroecological patterns 135
 Island biogeography: evidence for equilibrium conditions? 136
 Inter- and intraoceanic patterns: historical events and centers of diversity are important 138
 Freshwater fishes: diversity is determined by the effects of latitude, area, and history, but the effect of productivity is ambiguous 150
 Latitudinal diversity gradients: equilibrium and nonequilibrium explanations 152
 General global patterns in diversity 165
Contents

10 An autecological comparison: the ecology of some Aspidogastrea 168
11 What explains the differences found? A summary, and prospects for an ecology of the future
 What explains the differences between communities? 178
 A summary, and prospects for an ecology of the future 182

References 189
Taxonomic index 216
Subject index 219
Acknowledgements

I thank Peter Rohde who wrote the program for generating Figure 3.3 and helped with scanning the other figures. He also drew my attention to the book by Wolfram (2002) and made helpful comments on the sections dealing with cellular automata. I am grateful to anonymous referees for valuable comments on the entire manuscript. I wish to thank the following colleagues for commenting on sections of the manuscript: Josef Alvermann, Stuart Barker, Stuart Cairns, Peter Clarke, Howard Cornell, Hugh Ford, Nick Gotelli, Illka Hanski, Chris Nadolny, Ross Robertson, Peter Sale, Diane Srivastava, Gimme Walter. David Jablonski gave advice on fossil species diversity, Stuart Cairns advised me on literature dealing with kangaroo ecology and population biology, Bernard Seret and Tim Berra on literature dealing with fish diversity in Madagascar, Peter Sale and Ross Robertson on reef fish literature, Peter Clarke and Chris Nadolny on tropical rainforest literature, and Hugh Ford on literature dealing with recent extinctions.

The following kindly permitted the use of figures: Andrew Allen, Stuart Cairns, Howard Cornell, Don DeAngelis, James Gillooly, Illka Hanski, M. A. Hixon, David Jablonski, Kazuo Kawano, Armand Kuris, Sergio Navarette, Robert Poulin, Mark Ritchie, Michael Rosenzweig, Peter Sale, Jianguo Wu, and the editors of Oikos and Ecography.

I also wish to thank John Hooper of the Queensland Museum, Brisbane, and Charlie Veron of the Australian Institute of Marine Science, Townsville, Queensland, for the cover photos.