Table of Contents

Preface

page xiii

Acknowledgments

page xix

1 Optical networking technology
1.1 Wavelength-division multiplexing
1.2 Broadcast-and-select networks
1.3 Wavelength-routed WDM networks
1.4 Wavelength conversion in WDM networks
1.5 Optical packet switching
1.6 Optical burst switching
1.7 The rest of the book

2 Design issues
2.1 Network design
2.2 Network model
2.3 Routing and wavelength assignment
2.4 Multi-fiber networks
2.5 Survivability
2.6 Restoration methods
2.7 Traffic grooming in WDM networks
2.8 Optical packet switching
2.9 Optical burst switching

3 Restoration approaches
3.1 Restoration model
3.2 Upgradeable network design
3.3 Notation
3.4 Cost model
3.5 Design problem
3.6 Heuristic approach for network design
Contents

3.7 Network upgrade 55
3.8 Methodology validation 56

4 p-cycle protection 62
 4.1 Design of p-cycle restorable networks 62
 4.2 Cycle selection algorithms 63
 4.3 Joint optimization of p-cycle design 66
 4.4 A p-cycle-based design for dynamic traffic 66
 4.5 Algorithm for finding all cycles 82

5 Network operation 86
 5.1 Capacity minimization 86
 5.2 Revenue maximization 87
 5.3 Capacity minimization: problem formulation 88
 5.4 Revenue maximization: problem formulation 90
 5.5 Solution methodology 93
 5.6 Performance evaluation 95

6 Managing large networks 102
 6.1 Online algorithm 102
 6.2 Example 105
 6.3 LP formulation 106
 6.4 Solving for excess demands 110
 6.5 Quality of the LP heuristic algorithm 110
 6.6 ILP and LP solution run times 113
 6.7 Run times for the LP heuristic algorithm 115

7 Subgraph-based protection strategy 116
 7.1 Subgraph-based routing and fault tolerance model 117
 7.2 Performance of subgraph-based routing 119
 7.3 Performance results 123
 7.4 Multi-link and other failures 127
 7.5 Constrained subgraph routing 130
 7.6 Example 131
 7.7 Observations 140

8 Managing multiple link failures 143
 8.1 Link-based protection for two link failures 144
 8.2 Path-based protection 147
 8.3 Formulating two link failures 148
 8.4 Examples and comparison 155
 8.5 Dual-link failure coverage of single-failure protection schemes 157
 8.6 Dual-link failure coverage using shared-mesh protection 159
 8.7 Dual-link failure coverage: subgraph routing 161
Contents

8.8 Coverage computation 163
8.9 Observations 167

9 Traffic grooming in WDM networks 169
9.1 Traffic grooming in WDM rings 173
9.2 Static traffic grooming in rings 173
9.3 Dynamic traffic grooming in WDM networks 178

10 Gains of traffic grooming 184
10.1 Network parameters 185
10.2 Modeling constrained grooming networks 186
10.3 Sparse grooming network 194
10.4 Validation of the model 195

11 Capacity fairness in grooming 201
11.1 Managing longer paths 202
11.2 Capacity fairness 203
11.3 Fairness performance of RWA algorithms 205
11.4 Connection admission control for fairness 206

12 Survivable traffic grooming 210
12.1 Traffic stream multiplexing on a single wavelength link 211
12.2 Grooming traffic streams on the network 213
12.3 Routing and wavelength assignment 216
12.4 Effect of traffic grooming 218

13 Static survivable grooming network design 224
13.1 Design problem 224
13.2 Example 231

14 Trunk-switched networks 236
14.1 Channels and trunks 236
14.2 Modeling a WDM grooming network as a TSN 237
14.3 Node architecture 238
14.4 Free and busy trunks 241
14.5 Connection establishment 243
14.6 Grooming network model 246
14.7 MICRON framework 247
14.8 A two-pass approach 252
14.9 Modeling a channel-space switch in MICRON 257

15 Blocking in TSN 261
15.1 Blocking model 261
15.2 Estimation of call arrival rates on a link 262
15.3 Path blocking performance 264
15.4 Free trunk distribution 269
15.5 Modeling switches 273
15.6 Heterogeneous switch architectures 274
15.7 Improving the accuracy of the analytical model 278
16 Validation of the TSN model 280
16.1 Simulation setup 281
16.2 Homogeneous networks performance 282
16.3 Heterogeneous networks performance 287
16.4 Observations 292
17 Performance of dynamic routing in WDM grooming networks 293
17.1 Information collection 293
17.2 Path-selection algorithms 296
17.3 An example 298
17.4 Performance of routing algorithms 298
17.5 Experimental setup 299
18 IP over WDM traffic grooming 309
18.1 IP traffic grooming in WDM networks 311
18.2 IP traffic grooming problem formulation 313
18.3 Solution for an optimal strategy 315
18.4 Approximate approach 318
18.5 Traffic aggregation algorithm 318
18.6 Example of traffic aggregation 321
18.7 Performance study 324
18.8 Examples 325
19 Light trail architecture for grooming 330
19.1 Light trail 330
19.2 Node structure 331
19.3 Light trail characteristics 333
19.4 Light trail design 334
19.5 Solution considerations 337
19.6 Light trail hop-length limit: $T_{l_{\text{max}}} = 4$ 343
19.7 Light trail hop-length limit: $T_{l_{\text{max}}} = 5$ 346
19.8 Restoration in the light trail architecture 347
19.9 Survivable light trail design 350
19.10 ILP formulation: connection-based protection 350
Appendix 1 Optical network components 357
Appendix 2 Network design 377
Appendix 3 Graph model for network 390
<table>
<thead>
<tr>
<th>Contents</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 4 Graph algorithms</td>
<td>393</td>
</tr>
<tr>
<td>Appendix 5 Routing algorithm</td>
<td>406</td>
</tr>
<tr>
<td>Appendix 6 Network topology design</td>
<td>408</td>
</tr>
<tr>
<td>References</td>
<td>416</td>
</tr>
<tr>
<td>Index</td>
<td>434</td>
</tr>
</tbody>
</table>