
Chapter 1

The celestial sphere and
coordinate systems

In the night sky the stars appear as bright points on a dark spherical
surface (Figure 1.1). No such surface really exists, of course, but the
concept of a celestial sphere is a useful one that goes back thousands of
years. Ptolemy described it and so did Pythagoras and many others. Today
we no longer have to worry about the reality of that sphere, and so we
eliminate the need for speculation on its composition, radius, thickness
and so forth. On the other hand, even though the celestial sphere is not a
physical entity, we have many practical uses for the concept. The observer
is always at the center of it, and the direction from the observer to any
star may be considered to be a radius of the celestial sphere.

The stars are so far very away that we can consider the celestial
sphere to be very large and the Earth very small. From the perspective of
an observer on the celestial sphere looking back, the entire Earth would
appear as a single point. And on the surface of the Earth, when we point
to objects in the sky, we don’t need to know how far away they are for
the purposes of positional astronomy. We need only be concerned with
the angles between points on the celestial sphere. That’s why a good
planetarium fools us into thinking that we are looking at the real sky.

Coordinate systems
The most fundamental application of the concept of a celestial sphere
is to determine the coordinates of objects that appear in the sky (or
perhaps, on the sky). We can approach this problem of coordinates in a
very general way and see first of all just what is involved in specifying
the location of a point on the surface of any sphere. Assume, to begin
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2 Observational Astronomy

Figure 1.1. The celestial sphere depicted in a woodcut often mistakenly
attributed to a medieval author. This powerful piece of visual rhetoric is often
used to advance the incorrect claim that medievals believed the Earth was flat.
Its earliest known appearance is in Camille Flammarion’s L’atmosphere:
météorologie populaire in 1888. (Courtesy History of Science Collections,
University of Oklahoma Libraries.)

with, that the sphere is rotating. This requires the existence of an axis
that passes through the center of the sphere as in Figure 1.2. The axis is
thus defined by the rotation, and the axis defines, in turn, two points – the
poles. Following the convention established for the Earth, we designate
these as the north pole and the south pole. Now consider a plane passing
through the sphere in such a way that it is perpendicular to the axis and
includes the center of the sphere. In the case of the Earth this plane is
called the equator. In the more general case this plane is referred to as
the fundamental plane, taking on a more specific name depending on
the system of coordinates.
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The celestial sphere and coordinate systems 3
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Figure 1.2. A rotating
sphere. The poles and the
equator are defined by the
rotation.

Imagine now that we wish to define in a specific way the location
of a point A on the sphere shown in Figure 1.3(a). Let us first pass a
plane through the sphere so that the plane includes both the axis of the
sphere and point A. In Figure 1.3(a) this plane has been indicated by
the curve passing through the two poles and point A. Points B and C are
also indicated. Point C is at the center of the sphere, and point B is the
intersection of the circular arc PA with the equator. It should be obvious
that ∠BCA defines the angular distance of A from the fundamental plane.
On the Earth, an angle similar to ∠BCA is called the latitude. Of course,
we do not go to the center of the Earth in order to determine the latitude
of a place, but it is actually this angle that we are talking about when we
use the term.

Now let us pass another plane through the sphere. Let this one be
parallel to the fundamental plane, and let it pass through A. Notice that
the radius of this circle is smaller than that of the fundamental circle.
At this point we must introduce two terms. First, a great circle is the
intersection of any plane with a sphere such that the plane passes through
the center of the sphere. Thus, the fundamental plane forms a great circle,
and this is called the fundamental circle, and the arc PAP′ is half of a
great circle. Second, a small circle is the intersection of any plane with
a sphere such that the plane does not contain the center of the sphere.
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4 Observational Astronomy
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Figure 1.3. (a) The angle
between two points on a
sphere. (b) A small circle
through point A. (c) Two
angles define the location of
point A with respect to the
equator and an arbitrarily
chosen point D.
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The celestial sphere and coordinate systems 5

In the case shown in Figure 1.3(b), the small circle happens to be parallel
to the fundamental plane, but a small circle can have any orientation.

Returning to Figure 1.3(b), we can see that all points on the small
circle are at the same angular distance from the fundamental circle.
On the Earth we would say that all points on this small circle had the
same latitude. In order to be precise about the location of A, we must
specify in some way which of all of the possible great circles through
the poles is the one that passes through A. We may do this by means of
a second angle, measured this time in the fundamental plane. We must
first select some arbitrary point as our zero point, and in Figure 1.3(c)
this point has been indicated as D. Now ∠DCB quite specifically defines
the great circle through A. On the earth the circle PDP′ represents the
meridian of Greenwich, England, and ∠DCB represents the longitude of
point A.

The discussion just presented is intended to show that the location
of any point on a sphere can be specified by using two angles. One angle
is measured perpendicular to the fundamental plane, and the other angle
is measured in the fundamental plane. Just as we can uniquely identify
any point on a Cartesian plane with x and y coordinates, any point on the
surface of a sphere can be uniquely identified using two angles. Think
of it as “wrapping” the sphere with a piece of graph paper.

Astronomers make use of several spherical coordinate systems. The
principal difference between them is that the positions of the stars are
referenced to a different fundamental plane.

Example 1.1 Great vs. small circles

At the equator, which is a great circle, the distance corresponding
to 1◦ of longitude is simply 1/360 of the circumference of the Earth.
The circumference of the Earth is given by 2πR, where R is the radius
of the Earth. So, 1◦ of longitude along the equator amounts to(

1

360

)
(2π)(6378 km) = 111.3 km (at latitude 0◦)

At latitude φ = 45◦, however, 1◦ of longitude corresponds to a much
shorter distance

(111.3 km) cos φ = (111.3 km) cos 45 = 78.7 km (at latitude 45◦)

An arc at constant latitude 45◦ that is 1◦ longitude in arc length is
part of a small circle, and it has a physical length that is a factor of
cos φ smaller than the great circle distance corresponding to the same
longitude arc length at the equator.
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6 Observational Astronomy
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Figure 1.4. Altitude and
azimuth in the horizon system.
S is the position of the star.

Altitude–azimuth coordinates
The horizon system is the most intuitive when we first begin to discuss
the positions of stars. Here, the fundamental plane is the plane of the
observer’s ideal horizon, and one pole is at the zenith, the point directly
overhead. The unobstructed horizon is by definition 90◦ from the zenith.
Altitude is the angle that the observer would measure from the horizon
to an object in the sky, measured along a great-circle arc that passes
through the zenith. Altitude varies from 0◦ for an object on the horizon
to 90◦ for an object at the zenith. An object below the horizon would
not be visible, but it may be considered as having a negative altitude.
An example of this is the Sun and twilight. When the Sun is 18◦ below
the horizon, we call this the moment of astronomical twilight. It marks
the time when the last trace of evening twilight fades from the sky, or
when morning twilight begins. The center of the Sun at the moment of
astronomical twilight has an altitude of −18◦.

In the horizon system, altitude is the first coordinate we need to
uniquely identify any point on the sky. Determining the second coor-
dinate requires selecting a zero point direction along the horizon, and
for that we choose the north point. The azimuth is defined as the angle
measured in the plane of the horizon from the north point to the point
at which the arc from the zenith through the object crosses the horizon.
By convention the azimuth increases in the direction toward the east.
Figure 1.4 illustrates how altitude and azimuth are measured with respect
to the horizon. Figure 1.5 shows a theodolite used to measure the alti-
tudes and azimuths of celestial objects.

This coordinate system is variously referred to as the horizon sys-
tem, the altitude–azimuth system, or as simply the alt–az system. Since
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The celestial sphere and coordinate systems 7

Figure 1.5. The theodolite,
an instrument for measuring
altitude and azimuth
(Wellesley College
photograph).

the Earth rotates continually towards the east, celestial objects appear to
move from east to west across the sky. This means that in the horizon
system the coordinates of objects are always changing. Such a system
does have useful applications as we shall see, but it cannot be used to
provide permanent descriptions of the locations of stars on the celestial
sphere.

Equatorial coordinates
A coordinate system with more useful properties in astronomy is the
equatorial system in which the fundamental plane is now the celestial
equator. If one imagines a very small spherical Earth at the center of
a very large spherical sky, then the extension of the Earth’s axis defines
the celestial poles, and the extension of the plane of the Earth’s equa-
tor defines the celestial equator. In the equatorial system, then, coordi-
nates of stars are defined with respect to the celestial equator. The angle
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8 Observational Astronomy

Figure 1.6. (a) The
equatorial coordinate system.
(b) The equatorial system
superimposed on the horizon
system. V is the vernal
equinox.

measured northward or southward from the celestial equator is called
the declination, and the angle measured in the plane of the celestial
equator is called the right ascension. These two angles are indicated
as Dec and RA respectively in Figure 1.6(a). A zero-point for the mea-
surement of the RA angle must, of course, be selected, and for this we
use the vernal equinox ( ), the point on the sky where the Sun crosses
the celestial equator moving northward on or near March 21 each year.
This point has been marked V in Figure 1.6(a). There is no obvious
way in which one can identify the vernal equinox when looking at the
sky, but later in Chapter 4 we shall show that this point can be located
quite specifically from very simple observations. Later in this chapter
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The celestial sphere and coordinate systems 9

we shall also describe the methods by which astronomers determine the
right ascensions and declinations of stars.

By convention, declination is considered positive for objects in the
northern hemisphere of the sky (north of the celestial equator) and neg-
ative for objects in the southern hemisphere of the sky (south of the
celestial equator). Right ascension increases as one moves east along
the celestial equator, and it is measured conveniently (we shall see why
later) in units of time: hours, minutes, and seconds. Right ascension
ranges from 0h to 24h, and because 24h = 360◦, there are 360◦/24h =
15◦ per hour of right ascension. Declination is measured in degrees.
Astronomers often use the Greek letter alpha, α, to denote right ascen-
sion, and the Greek letter delta, δ, to denote declination.

The origin of the terms right ascension and declination is interesting.
The apparent motion of the stars upon the celestial sphere as the Earth
rotates appears quite different depending on where one is situated upon
the surface of the Earth. At the Earth’s equator, the stars all rise perpen-
dicular to the eastern horizon, and the celestial equator passes through
the zenith. This celestial sphere is called a right sphere. At either of
Earth’s poles, the stars appear to wheel around the zenith at constant
altitude, and this celestial sphere is called a parallel sphere. At all other
latitudes on the earth, we have a combination of rising (and setting) and
wheeling motion (circumpolar stars), and this celestial sphere is called
an oblique sphere. At the Earth’s equator, all stars rising above the east-
ern horizon at a given moment have the same celestial longitude, that
is, they have the same right ascension. The stars ascend vertically in the
east in a right sphere, hence the term right ascension. An early meaning
of the word declination refers to an inclination or leaning towards or
away from something. This makes perfect sense when one considers that
declination is the angular distance of a celestial object from the celestial
equator. We will leave it as an exercise for the historically curious to
figure out why the term declination, with all its negative nuances, was
used instead of its more positive analog inclination.

In Figure 1.6(b) we have shown both the equatorial and the horizon
systems superimposed on the same sketch. We remind the reader that
as the sky appears to rotate counterclockwise around the north celestial
pole, the altitude and azimuth of any celestial object will both be chang-
ing continuously, unless the object is fortuitously located precisely at the
north celestial pole. The right ascension and declination will, of course,
remain fixed. In the diagram, the great circle defined by the arc ZPN
is called the observer’s celestial meridian (or simply meridian), and it
always goes through the observer’s zenith and the north and south points
on the horizon (azimuth 0◦ and 180◦, respectively), dividing the sky into
an east half and west half. Here ∠ZPS has been marked H, and this angle
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10 Observational Astronomy

is referred to as the hour angle. In other words, the hour angle indicates
how far east or west of the meridian an object is, measured along the
celestial equator. It is conventional to regard the hour angle as being
negative when a star is east of the meridian and positive when a star is
west of the meridian. Because the Earth is rotating, the hour angle is
constantly changing, and as time passes the hour angle decreases pro-
gressively (that is, approaches zero) when a star is east of the meridian
and becomes progressively larger after the star has crossed the meridian
into the western sky. It is often useful to know the hour angle of a celes-
tial object, because it tells you when the object crosses (or did cross) the
meridian relative to the present time. The time of meridian crossing is
the best time to look at a celestial object, because then it reaches its maxi-
mum altitude when the distorting effects of the Earth’s atmosphere should
be minimal. (Circumpolar stars cross the meridian above the horizon
twice each day. We are usually interested in the meridian crossing that is
above the north celestial pole, known as the upper culmination.) The
hour angle of a star will depend upon the time at which the observa-
tion is being made and the right ascension of the star. We shall return
to this subject in Chapter 4 where we shall see how the hour angle is
determined.

Other coordinates
Another system of coordinates was of considerable use among
astronomers several hundred years ago and is used today by those who
are engaged in the study of the motions of the planets. In this system the
fundamental plane is the ecliptic, the apparent path of the Sun around
the sky (and the plane of the Earth’s orbit projected upon the celestial
sphere). The zero point on the ecliptic is again the vernal equinox, and the
two coordinates are known as ecliptic latitude, β, and ecliptic longitude,
λ. Figure 1.7 illustrates the ecliptic system of coordinates.

Finally, in studies of our Galaxy, astronomers make use of a system
of coordinates in which the fundamental plane is the galactic equator, a
great circle that closely approximates the “centerline” of the Milky Way
on the sky. Astronomers have carefully chosen the right ascension and
declination of the galactic north pole in such a way that the galactic equa-
tor is precisely defined. As illustrated in Figure 1.8, the two coordinates
are known as galactic latitude, b, and galactic longitude, l, and the zero
point on the galactic equator is a point in the constellation Sagittarius,
which marks the direction to the center of our Galaxy. It is worthy of
mention here that galactic coordinates cannot be determined by direct
observation. They are calculated from the equatorial coordinates of the
object of interest, the galactic pole, and the center of the Galaxy. Details
of this computation will be presented in Chapter 4.
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