Electromagnetics for High-Speed Analog and Digital Communication Circuits

Modern communications technology demands smaller, faster, and more efficient circuits, the design of which requires a good understanding of circuit theory and electromagnetics. This book reviews the fundamentals of electromagnetism as applied to passive and active circuit elements, highlighting the various effects and potential problems in designing a new circuit. The author begins with a review of the basics: the origin of resistance, capacitance, and inductance, from a circuit and field perspective; then progresses to more advanced topics such as passive device design and layout, resonant circuits, impedance matching, high-speed switching circuits, and parasitic coupling and isolation techniques. Using examples and applications in RF and microwave systems, the author describes transmission lines, transformers, and distributed circuits. State-of-the-art developments in Si-based broadband analog, RF, microwave, and mm-wave circuits are also covered. With up-to-date results, techniques, practical examples, many illustrations, and worked examples, this book will be valuable to advanced undergraduate and graduate students of electrical engineering and practitioners in the IC design industry. Further resources for this title are available at www.cambridge.org/9780521853507.

ALI M. NIKNEJAD obtained his Ph.D. in 2000 from the University of California, Berkeley, where he is currently an associate professor in the EECS department. He is a faculty director at the Berkeley Wireless Research Center (BWRC) and the co-director of the BSIM Research Group. Before his appointment at Berkeley, Niknejad worked for several years in industry designing CMOS and SiGe ICs. He has also served as an associate editor of the *IEEE Journal of Solid-State Circuits*, and was a co-recipient of the Jack Raper Award for Outstanding Technology Directions Paper at ISSCC 2004.

Electromagnetics for High-Speed Analog and Digital Communication Circuits

ALI M. NIKNEJAD

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521853507

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

ISBN-13 978-0-521-85350-7 hardback ISBN-10 0-521-85350-8 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface		<i>page</i> ix	
	Ack	nowledgments	xi	
1	Intr	1		
	1.1	Motivation	1	
	1.2	System in Package (SiP): chip and package co-design	13	
	1.3	Future wireless communication systems	13	
	1.4	Circuits and electromagnetic simulation	15	
2	Cap	pacitance	18	
	2.1	Electrostatics review	18	
	2.2	Capacitance	32	
	2.3	Non-linear capacitance	41	
	2.4	References	52	
3	Res	istance	53	
	3.1	Ohm's Law	53	
	3.2	Conduction in semiconductors	59	
	3.3	Diffusion	66	
	3.4	Thermal noise	68	
	3.5	References	73	
4	Am	père, Faraday, and Maxwell	74	
	4.1	Ampère: static magnetic fields	74	
	4.2	Magnetic materials	82	
	4.3	Faraday's big discovery	88	
	4.4	Maxwell's displacement current	91	
	4.5	References	95	
5	Inductance		96	
	5.1	Introduction	96	
	5.2	Inductance	97	
	5.3	Magnetic energy and inductance	101	
	5.4	Discussion of inductance	106	

i	Contents				
	5.5	Partial inductance and return currents	119		
	5.5 5.6	Impedance and quality factor	120		
	5.0 5.7	Frequency response of inductors	12		
	5.7 5.8		12		
	5.8 5.9	Quality factor of inductors	130		
		Inductors and switching circuits			
	5.10 5.11	Preview: how inductors mutate into capacitors References	135 136		
6	Passi	ive device design and layout	137		
U	6.1	Ring inductor	137		
	6.2	The classic coil	141		
	6.3	Spirals	143		
	6.4	Symmetric inductors	145		
	6.5	Multilayer inductors	147		
	6.6	Inductor equivalent circuit models	149		
	6.7	Integrated capacitors	150		
	6.8	Calculation by means of the vector potential	153		
	6.9	References	165		
	6.10	Appendix: Filamental partial mutual inductance	165		
7	Reso	nance and impedance matching	168		
,	7.1	Resonance	168		
	7.2	The many faces of Q	180		
	7.3	Impedance matching	186		
	7.4	Distributed matching networks	199		
	7.5	Filters	199		
	7.6	References	200		
8	Smal	ll-signal high-speed amplifiers	201		
	8.1	Broadband amplifiers	202		
	8.2	Classical two-port amplifier design	220		
	8.3	Transistor figures of merit	242		
	8.4	References	244		
9	Tran	smission lines	246		
	9.1	Distributed properties of a cable	246		
	9.2	An infinite ladder network	248		
	9.3	Transmission lines as distributed ladder networks	249		
	9.4	Transmission line termination	253		
	9.5	Lossless transmission lines	255		
	9.6	Lossy transmission lines	260		
	9.7	Field theory of transmission lines	264		
	9.8	T-line structures	265		
	9.9	Transmission line circuits	272		

	Conte	vii	
	9.10	The Smith Chart	282
	9.11	Transmission line-matching networks	287
	9.12	References	292
10	Trans	formers	293
	10.1	Ideal transformers	293
	10.2	Dot convention	294
	10.3	Coupled inductors as transformers	295
	10.4	Coupled inductor equivalent circuits	296
	10.5	Transformer design and layout	299
	10.6	Baluns	301
	10.7	Hybrid transformer	302
	10.8	Transformer parasitics	305
	10.9	Transformer figures of merit	305
	10.10	Circuits with transformers	310
	10.11	References	319
11	Distril	buted circuits	320
	11.1	Distributed RC circuits	320
	11.2	Transmission line transformers	325
	11.3	FETs at high frequency	332
	11.4	Distributed amplifier	335
	11.5	References	342
12	High-s	speed switching circuits	343
	12.1	Transmission lines and high-speed switching circuits	343
	12.2	Transients on transmission lines	345
	12.3	Step function excitation of an infinite line	346
	12.4	Terminated transmission line	348
	12.5	Reactive terminations	357
	12.6	Transmission line dispersion	360
	12.7	References	363
13	Magn	etic and electrical coupling and isolation	364
	13.1	Electrical coupling	364
	13.2	Magnetic coupling	367
	13.3	Ground noise coupling	373
	13.4	Substrate coupling	378
	13.5	Package coupling	383
	13.6	References	385
14	Electr	omagnetic propagation and radiation	386
	14.1	Maxwell's equations in source-free regions	386
	14.2	Penetration of waves into conductors	390

viii

Contents

Cambridge University Press 978-0-521-85350-7 - Electromagnetics for High-Speed Analog and Digital Communication Circuits Ali M. Niknejad Frontmatter <u>More information</u>

	14.3	Poynting vector	395
	14.4	EM power carried by a plane wave	397
	14.5	Complex Poynting Theorem	399
	14.6	Reflections from a perfect conductor	402
	14.7	Normal incidence on a dielectric	404
	14.8	References	406
15	Micr	rowave circuits	407
	15.1	What are microwave circuits?	407
	15.2	Microwave networks	409
	15.3	Lorentz reciprocity theorem	409
	15.4	The network formulation	412
	15.5	Scattering matrix	414
	15.6	Properties of three-ports	421
	15.7	Properties of four-ports	429
	15.8	Two conductor coupler	438
	15.9	References	440
	Refer	rences	441
	Index		445

Preface

Why another EM book? There are virtually thousands of books written on this subject and yet I felt the urge to write another one.

The idea for this book germinated in my mind on a long and uneventful drive from Berkeley to San Diego. I had just completed my first year of graduate school at Berkeley and had started a research project on analyzing spiral inductors. It occurred to me that studying electromagnetics as a circuit designer was a lot easier than studying it as an undergraduate at UCLA. Even though I took many EM courses during my undergraduate education, very little of it actually stuck with me. Much like all those foreign languages we learn in high school or college, without any practice, we quickly lose our skills. When we find ourselves at that critical moment in a foreign country, our language skills fail us. While EM is the foundation of much of electrical engineering, somehow it's treated as a foreign tongue, spoken only by the few learned folks in the the field. But learning EM should not be like learning Greek or Latin!

That summer I spent many weekends in San Diego visiting my family. During these trips I'd take my EM books down to the beach and study. I'd plant myself on the beach at La Jolla or Del Mar and work my way through my undergraduate EM text. This time around, things were making a lot more sense, since I had an urgent need to actually learn electromagnetics. But I observed that having a circuits background was somewhat equivalent to speaking a related derived tongue. I realized that many people out there also missed the boat on learning EM, since they learned it without any background, desire, or need to learn it. But many of those same people, after taking a lot of high-frequency electronics courses, feel they need to relearn this important subject. If you're one of those people, this book is written for you!

When I was an undergraduate student, EM courses were a required part of every EE student's education. No matter how painful, you had to work your way through two or three courses. But today the situation has changed dramatically. Many schools have made this an optional course and, much to our horror, many students simply skip it! Even though they do take EM as part of their physics education, the emphasis is on fundamentals, with no coverage of important engineering topics such as transmission lines or waveguides. Today, more than ever, this seems like a tragedy. High-speed digital, RF, and microwave circuits abound, necessitating the training of engineers in the art and science of electronics, electromagnetics, communication circuits, antennas, propagation, etc.

With the availability of high-speed 64-bit microprocessors, server farms, Gb/s networks, and mass storage, many practical problems are now computationally tractable. Workers in the field of high-speed electronics are increasingly turning to commercial electromagnetic

x Preface

solvers to tackle difficult problems. As powerful as EM solvers are today, it still takes a lot of skill to set up and run a problem. And at the end of a long five hour simulation, can you trust the results? Did you actually set up the problem correctly? Are the boundary conditions appropriate? Is the field accuracy high enough? These are difficult questions and can only be answered by observing the currents, voltages, and electric and magnetic fields with a trained eye.

The focus of this book is the application of electromagnetics to circuit design. In contrast to classical analog integrated circuit design, passive components play an integral role in the design of RF, microwave, and broadband systems. Most books dedicate a section or at best a chapter to this all important topic.

The book begins with the fundamentals – the origins of resistance, capacitance, and inductance. We spend a great deal of time reviewing these fundamental passive elements from a circuit and field perspective. With this solid foundation, the book progresses to more advanced applications. A chapter on passive device design and layout reviews stateof-the-art layout techniques for the realization of passive devices in an integrated circuit environment. Important circuit applications such as resonant circuits and impedance matching are covered extensively with an emphasis on the inner workings of the circuitry (rather than a cookbook approach) in order to uncover important insights into the insertion loss of these circuits. Next, the book moves to active two-port circuits and reviews the codesign of amplifiers with passive components. Two-port circuit theory is used extensively to understand optimal power gain, stability, activity, and unilateral gain. Transmission lines, transformers, and distributed circuits form the core of the advanced circuit applications of passive elements. These topics are taught in a coherent fashion with many important examples and applications to RF and microwave systems. The time-domain perspective is covered in a chapter on high-speed switching circuits, with a detailed discussion of the transient waveforms on transmission lines and transmission line dispersion. Parasitic coupling and isolation techniques are the topic of an entire chapter, including discussion of package, board, and substrate coupling. An introduction to the analysis and design of passive microwave circuits is also covered, serving as a bridge to an advanced microwave textbook.

Acknowledgments

I would like to thank all the people who have helped me write this book. Much of this material was inspired by teaching courses at Berkeley and so I thank all the students who read the original lecture notes and provided feedback in EECS 105, 117, 142, 217, and 242 (thanks to Ke Lu for detailed feedback). This book would not be as interesting (assuming you find it so) without real circuit applications drawn from literature and from our own research projects. Thanks to my colleagues and collaborators at Berkeley who have created a rich and stimulating research environment. In particular, thanks to my BWRC colleagues, Robert Brodersen, Jan Rabaey, Bora Nikolic, Robert Meyer, Paul Wright, and John Wawrzynek. And thanks to Professor Chenming Hu for inviting me to be a part of the world-famous BSIM team. Thanks to Jane Xi for her hard work and dedication to the BSIM team. Special thanks goes to the graduate student researchers. In particular, thanks to Sohrab Emami and Chinh Doan who were key players in starting the Berkeley 60 GHz project and OGRE. Many of the high-frequency examples come from our experience with this project. Thanks to Professor Andrea Bevilacqua (University of Padova, Italy) for a stimulating research collaboration on UWB. Thanks to Axel Berny and his love of oscillators.

Though I take responsibility for any errors in the book, I have my graduate students to thank for the countless errors they were able to find by reading through early drafts of the manuscript. Thanks to Ehsan Adabi, Bagher (Ali) Afshar, Mounir Bohsali, Yuen Hui Chee, Wei-Hung Chen, Debo Chowdhury, Mohan Dunga, Gang Liu, Peter Haldi, Babak Heydari, and Nuntachai Poobuapheun. They provided detailed feedback on various chapters of the book.

Also thanks to my friends and colleagues for reviewing the book. In particular I'm grateful to Dr. Manolis Terrovitis, Eric Hoffman, Professor Hui Wu, and Professor Hossein Hashemi for taking the time to review the book and provide feedback.

Finally, thanks to the folks who supported our research during the past four years. Special thanks to DARPA and the TEAM project, in particular thanks to Barry Perlman and Dan Radack for your support of university research. Thanks to BWRC member companies, in particular ST Microelectronics, Agilent Technologies, Infineon, Conexant Systems, Cadence, and Qualcomm. Thanks to Analog Devices, Broadcom, Berkeley Design Automation, and National Semiconductor for your support through the UC MICRO and UC Discovery programs. And thanks to SRC and member companies for supporting research of compact modeling at Berkeley. Thanks in particular to Jim Hutchby of SRC, Keith Green of Texas Instruments, Weidong Liu of Synopsys, Judy An of AMD, Josef Watts and Jack Pekarik of IBM, and Ben Gu of Freescale.