LAGRANGIAN FLUID DYNAMICS

The emergence of observing systems such as acoustically-tracked floats in the deep ocean, and surface drifters navigating by satellite, has seen renewed interest in Lagrangian fluid dynamics.

Starting from the foundations of elementary kinematics and assuming some familiarity of Eulerian fluid dynamics, this book reviews the classical and new exact solutions of the Lagrangian framework, and then addresses the general solvability of the resulting general equations of motion. A unified account of turbulent diffusion and dispersion is offered, with applications among others to plankton patchiness in the ocean.

Designed as a graduate-level text and work of reference, the book provides the first detailed and comprehensive analytical development of the Lagrangian formulation of fluid dynamics, of interest not only to applied mathematicians but also oceanographers, meteorologists, mechanical engineers, astrophysicists and indeed all investigators of the dynamics of fluids.

ANDREW BENNETT is Professor at the College of Oceanic & Atmospheric Sciences, Oregon State University.
OTHER TITLES IN THIS SERIES

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit http://publishing.cambridge.org/stm/mathematics/cmma

Topographic Effects in Stratified Flows
PETER BAINES

Inverse Methods in Physical Oceanography
ANDREW F. BENNETT

Wave Interactions and Fluid Flows
A. D. D. CRAIK

Theory and Computation in Hydrodynamic Stability
W. CRIMINALE, T.L. JACKSON AND R.D. JOSLIN

Theory of Solidification
STEPHEN H. DAVIS

Dynamic Fracture Mechanics
L.B. FREUND

Finite Plastic Deformation of Crystalline Solids
K.S. HAVNER

Turbulence, Coherent Structures, Dynamical Systems and Symmetry
PHILIP HOLMES, J.L. LUMLEY AND GAL BERKOOZ

Acoustics of Fluid-Structure Interactions
M.S. HOWE

The Dynamics of Fluidized Particles
ROY JACKSON

Benard Cells and Taylor Vortices
E.L. KOSCHMIEDER

Ocean Acoustic Tomography
WALTER MUNK, PETER WORCESTER, AND CARL WUNSCH

Turbulent Combustion
NORBERT PETERS

Colloidal Dispersions
W.B. RUSSELL, D.A. SAVILLE, AND W.R. SCHOWALTER

Vortex Dynamics
P.G. SAFFMAN

The Structure of Turbulent Shear Flow
A.A. TOWNSEND

Bouyancy Effects in Fluids
J.S. TURNER

Reciprocity in Elastodynamics
J.D. ACHENBACH

Theory and Computation of Hydrodynamic Stability
W.O. CRIMINALE, T.L. JACKSON, AND R.D. JOSLIN

Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials
SIA NEMAT-NASSER
To John Joseph Mahony
Contents

Preface xiii

Acknowledgments xxii

PART I: THE LAGRANGIAN FORMULATION 1

1 Lagrangian kinematics 5
  1.1 Conservation of particle identity 5
  1.2 Streaklines, streamlines and steady flow 11
  1.3 Local kinematics 13

2 Lagrangian statistics 16
  2.1 Single-particle, single-time statistics 16
  2.2 Single-particle, two-time statistics 20
  2.3 Two-particle, two-time statistics 21
  2.4 The Eulerian–Lagrangian problem: path integrals 21

3 Lagrangian dynamics 25
  3.1 Conservation of mass 25
  3.2 Conservation of momentum 26
  3.3 Conservation of energy 30
  3.4 Variational principle 32
  3.5 Bernoulli’s theorem 33
  3.6 Kelvin’s theorem 34
  3.7 Cauchy–Weber integrals 36
    3.7.1 First integrals 36
    3.7.2 Matrix formulation 39
    3.7.3 Cauchy–Weber integrals and Clebsch potentials 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>Potential flow and a Riemannian metric</td>
<td>41</td>
</tr>
<tr>
<td>3.9</td>
<td>Boundary conditions</td>
<td>43</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Rigid boundaries</td>
<td>43</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Comoving boundaries</td>
<td>43</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Comoving boundary conditions</td>
<td>44</td>
</tr>
<tr>
<td>3.9.4</td>
<td>Adjacent Lagrangian coordinates</td>
<td>48</td>
</tr>
<tr>
<td>3.10</td>
<td>Local dynamics</td>
<td>48</td>
</tr>
<tr>
<td>3.11</td>
<td>Relabeling symmetry</td>
<td>50</td>
</tr>
<tr>
<td>3.12</td>
<td>Historical note</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>Coordinates</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Independent variables</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Dependent space variables</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Rotational symmetry</td>
<td>59</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Globally uniform rotations</td>
<td>59</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Time-varying rotations</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>Real fluids</td>
<td>62</td>
</tr>
<tr>
<td>5.1</td>
<td>Viscous stresses and heat conduction</td>
<td>62</td>
</tr>
<tr>
<td>5.2</td>
<td>Navier–Stokes equations for incompressible flow</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>Matrix formulation for viscous incompressible flow</td>
<td>64</td>
</tr>
<tr>
<td>5.4</td>
<td>Boundary conditions</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Some analytical Lagrangian solutions</td>
<td>71</td>
</tr>
<tr>
<td>6.1</td>
<td>Flow around a cylinder</td>
<td>71</td>
</tr>
<tr>
<td>6.2</td>
<td>Gerstner’s trochoidal wave</td>
<td>72</td>
</tr>
<tr>
<td>6.3</td>
<td>One-dimensional gas dynamics</td>
<td>76</td>
</tr>
<tr>
<td>6.3.1</td>
<td>One-dimensional traveling waves</td>
<td>76</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Riemann invariants</td>
<td>77</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Arbitrary one-dimensional flow</td>
<td>77</td>
</tr>
<tr>
<td>6.4</td>
<td>Plane Poiseuille flow</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>Sound waves, shear instabilities, Rossby waves and Ptolemaic vortices</td>
<td>79</td>
</tr>
<tr>
<td>7.1</td>
<td>Sound waves</td>
<td>79</td>
</tr>
<tr>
<td>7.2</td>
<td>Hydrodynamic stability</td>
<td>80</td>
</tr>
<tr>
<td>7.3</td>
<td>Rossby waves</td>
<td>82</td>
</tr>
<tr>
<td>7.4</td>
<td>Hamiltonian dynamics of Rossby waves</td>
<td>87</td>
</tr>
</tbody>
</table>
Contents

7.5 Plane Ptolemaic vortices 88
7.6 Sheared Ptolemaic vortices 91

8 Viscous incompressible flow 94
8.1 Simple shear flow 94
8.2 The suddenly accelerated plane wall: Stokes’ first problem 95
8.3 Flow near an oscillating flat plate: Stokes’ second problem 96
8.4 The boundary layer along a flat plate 97

9 General solvability 99
9.1 Kinematics 99
9.2 Incompressible dynamics (1) 99
9.3 Incompressible dynamics (2) 102
9.4 Incompressible dynamics (3) 103
9.5 Compressible dynamics 105
9.6 Labeling singularities 107
9.7 Phenomenology 108
9.8 Viscous incompressible flow 110
9.8.1 Equations of motion 111
9.8.2 Picard iteration 112
9.8.3 A priori bounds 113
9.8.4 The viscous operator 113
9.8.5 The elliptic operator 115

PART III: DIFFUSION 117

10 Absolute dispersion 123
10.1 Displacement: first and second moments 123
10.2 Displacement pdf 125
10.3 Forward closure, boundary conditions 127
10.4 Backward closure, scalar concentrations 131
10.5 Reversibility for incompressible flow; the Markov property, Corrsin’s hypotheses 133
10.6 Scalar concentrations in compressible flow; floats, surface drifters and balloons 137
10.7 Corrections 138
10.8 Random flight models and plankton dynamics 141
10.9 Annual plankton patchiness 143
Contents

11 Relative dispersion 146
  11.1 Joint displacement of a pair of particles 146
  11.2 Separation of a pair of particles 150
  11.3 Richardson’s self-similar asymptotic solution 153
  11.4 Lundgren’s log normal solution 155
  11.5 Observations of dispersion 158
  11.6 Kinetic energy subranges 162
  11.7 Kinetic energy spectra and structure functions 167
  11.8 Kinetic energy spectra and longitudinal diffusivities 170

12 Convective subranges of the scalar variance spectrum 177
  12.1 Scalar covariance 177
  12.2 Reversibility 179
  12.3 Power spectra 179
  12.4 Enstrophy inertia convective subrange 181
  12.5 Energy inertia convective subrange 182
  12.6 Viscous convective subrange 185
  12.7 Transition 186
  12.8 Relative dispersion and plankton patchiness 188

13 Diffusion 191
  13.1 Scalar diffusion: An approximate general solution 191
  13.2 Variance spectrum 194
  13.3 Enstrophy inertia diffusive subrange 196
  13.4 Energy inertia diffusive subrange 198
  13.5 Viscous diffusive subrange 200

PART IV: LAGRANGIAN DATA 207

14 Observing systems 211
  14.1 The laboratory 211
  14.2 The atmosphere 212
  14.3 The ocean surface 212
  14.4 The deep ocean 214

15 Data analysis: the single particle 216
  15.1 Time series analysis: the single particle 216
     15.1.1 Polarization of Lagrangian velocities 216
     15.1.2 Diffusivities from floats 221
# Contents

15.2 Assimilation: the single particle 228
  15.2.1 Lagrangian measurement functionals 229
  15.2.2 Lagrangian assimilation: first steps 232

16 Data analysis: particle clusters 238
  16.1 Time series analysis: the particle pair 238
  16.2 Assimilation: particle clusters 241
    16.2.1 Eulerian kinematical analysis 241
    16.2.2 Lagrangian dynamical analysis: shallow-water theory 246
    16.2.3 Lagrangian dynamical analysis: Boussinesq theory 253
    16.2.4 Least-squares estimator 257

References 259
Subject Index 271
Author Index 283
Preface

Motivation

Leaves drifting in streams and blowing in the wind belong amongst our root impressions of the natural world. Plumes discharging into streams and pumping from smoke stacks symbolize our impact on that world. Thus it is baffling when as students we discover that fluid dynamics is seemingly exclusively investigated by measuring pressure at fixed points. The manometers in our first fluids laboratories plainly measure total stagnation pressure; the mechanical flow meters less obviously strike a dynamical balance between the torque of the partial stagnation pressure on the turbine blades and the torque of friction in the turbine bearings. Our hands and faces do feel the rush of a stream or the sweep of the wind, but these are brute sensations in comparison to the incisive information processing at work when our eyes follows a flow marker.

This is a book about the role of kinematics in fluid dynamics. The most revealing mathematical framework for developing kinematics is the Lagrangian formulation, long ago discarded for being unwieldy compared to the Eulerian formulation (Tokaty, 1971). Yet the discarded unwieldiness owes precisely to the richness of the kinematical information. This book might have been written any time in the twentieth century; the motivation now is the emergence of Lagrangian observing technology. The emergence is of course a reemergence; meteorologists have been routinely tracking weather balloons with theodolites since the nineteenth century. However, visual tracking and short transmitter life limit these data to being little more than local or Eulerian measurements of wind velocity and thermodynamic conditions. Radar, acoustics, satellite relays and satellite-based navigation changed all that in the late twentieth century. High-altitude balloons were tracked by satellites for days during the First GARP Global Experiment (WMO, 1977). Floats
deep in the ocean are now tracked, effectively continuously, for months and even years with onboard hydrophones and moored arrays of pingers.

Aims

The Lagrangian formulation of fluid dynamics is not likely to replace the Eulerian formulation. Such is especially the case in computational fluid dynamics, although hybrid techniques are gaining ascendency. Rather, the Lagrangian formulation complements the Eulerian. Hence this book is not intended as a first course in fluid dynamics, and readers are assumed to have studied Eulerian fluid dynamics at least at the level of an introductory course having a scientific rather than engineering bent (Batchelor, 1973). Advanced calculus (Apostol, 1957) and Cartesian tensors (Jeffreys, 1931) are of necessity used extensively. The treatment of turbulence here assumes considerable preliminary familiarity with empirical, dimensional and statistical aspects (Lumley and Panofsky, 1964; Tennekes and Lumley, 1972). The purpose of the treatment developed here, indeed the purpose of the book as a whole, is to reveal the unifying power of the Lagrangian formulation for one of the great problems in physics. The further purpose is the drawing of a broader perspective for the analysis of the important new environmental data being collected with the emerging Lagrangian technologies.

Contents

The development of Lagrangian fluid dynamics falls naturally into major parts. Part I is concerned with the essence of the Lagrangian formulation, beginning with the kinematics of particles and the introduction of a sufficiently powerful notation for particle kinematics. The reader is advised against skipping lightly through this seemingly prosaic material. It quantifies the concept of conservation of particle identity, which is perhaps the intrinsically Lagrangian concept. The concept is captured by the labeling theorem of Kraichnan (1965), also known as Lin’s identity (Lin, 1963). A striking corollary of this theorem is an exact expression for a generalized Lagrangian drift in a laminar flow and in each realization of a turbulent flow. Approximate drift formulae have long been the subject of speculation: here is the actuality. While the first candidate for a dependent variable in Lagrangian fluid dynamics is the particle path, the more readily observed structures are streamlines in a wind tunnel or towing tank, and streaklines downstream of sources such as discharge pipes and
smoke stacks. In anticipation of the complexity of such flow, the introduction of statistical quantification is essential. The rudiments are found here; comprehensive treatments may be found elsewhere, for example Monin and Yaglom (1971, 1975). A few generalities may be made for single particle and particle pair statistics in homogeneous turbulence, that is, in turbulent flow which is statistically uniform in space. The problem of relating Eulerian and Lagrangian statistics is shown to be formally solved with functional or 'path' integrals.

The Lagrangian developments of dynamical principles into conservation laws for mass, momentum and energy should be familiar since they are found in most purportedly Eulerian texts. This familiarity underscores the greater directness and clarity of the Lagrangian formulation of Newtonian dynamics for fluids. The momentum equation in particular involves particle accelerations; these are second-order partial derivatives of particle position with respect to time elapsed since identification or release. Both Cauchy and Weber realized (Lamb, 1932) that one integration in time is immediately feasible. Pressure is supplanted by another scalar invariant, while Cauchy’s vector invariant usurps vorticity. The Cauchy invariant reveals that neither the particle path nor the particle velocity is the intrinsic dependent variable in fluid dynamics; rather it is the Jacobi matrix or strain matrix of partial derivatives of position with respect to initial position, or with respect to whatever dependent variable identifies or labels the particle. Unlike particle position, the Jacobi matrix is invariant with respect to Galilean transformations of space. To split the hair, both the Eulerian equations of motion and the original Lagrangian equations of motion are Galilean invariant; it is their respective dependent variables of velocity and position which are not. Two Russian hydrodynamicists have recently pointed out that there is a matrix notation for the strain-based development (Yakubovich and Zenkovich, 2001). While this compact notation appears to offer no advantages for numerical computations, it has enabled its proponents to generalize the rotational wave of Gerstner (Lamb, 1932) to a new class of vortices.

Lagrangian fluid dynamics can be expressed as a variational principle; the invariance of the Lagrange density with respect to changes of particle labels leads to the fundamentally important conservation laws for Ertel’s potential vorticity. The laws are derived here with the care that is owed, to the extent that the widely claimed naturality for the variational approach is not so compelling.

Lagrangian variables, both dependent and independent, need coordinates. All the coordinate options in the Eulerian formulation are available. The detailed forms for the Lagrangian equations in various coordinates suggest
symmetries which are global in space: the familiar transformations represent-
ing rotations, which leave the equations invariant in form, are independent of 
position but may depend upon time. Of particular interest to meteorologists 
and oceanographers is the form of the Lagrangian equations in a uniformly 
rotating reference frame.

Real fluids are characterized by the constitutive relations between stress 
and strain. Newtonian fluids are defined by a linear relationship between the 
local stress tensor and the local rate of strain tensor. The locality is essentially 
Eulerian in nature. It is most simply expressed with Eulerian variables, and is 
particularly awkward in Lagrangian variables. Yet, again, the appearance of 
strain components, some of which may be rapidly growing, makes manifest 
the tendency for intensification of viscous stresses by differential particle 
motion. The locality of the Newtonian stress tensor is an expression of loss 
of memory, while the strength of the Lagrangian formulation is memory 
expressed as the retention of fluid particle identity. Which is the closer to 
reality: loss of memory or memory retention? While the Newtonian constitu-
tive relation is of undisputed practical value, it is not so much a fundamental 
physical law as a “phenomenological” law, to use the language of Prigogine 
(1980). In other words, a fluid continuum is an abstraction, an unnatural arti-
fice. Real air and real water consist of assemblies of molecules, obeying the 
fundamental laws of conservation of mass, momentum and energy. Viscous 
stresses are caused by nonequilibrium distributions of molecular velocity, 
as shown by the Chapman–Enskog deduction of the Navier–Stokes equa-
tions from Boltzmann’s equation (which deduction must surely qualify as the 
“grand unified field theory” of the early twentieth century, and in fact of much 
of the world which really matters to us; see Chapman and Cowling, 1970). 
Alas, Boltzmann’s *stosszahlansatz* is an admission of loss of memory at the 
molecular level (Thompson, 1988), so Lagrangian memory retention would 
seem to be in vain. Yet a complete topological description of the motion 
history of the macroscopic medium – the fluid continuum – demands a for-
mulation in which memory retention is intrinsic. The crisis was created not 
by the development of the Lagrangian formulation, but initially by Boltzmann 
having randomizing Liouville’s detailed microscopic description of molecular 
motion, and subsequently by Chapman and Enskog having taken moments of 
Boltzmann’s distributional description.

Having declared that the fully Lagrangian formulation of fluid dynamics 
appears to offer no great numerical computational advantage, it would be 
desirable to be able to offer a great range of analytical Lagrangian solutions. 
Alas, there are only a few and these are also presented in Part II. Then again, 
there are about as few analytical Eulerian solutions, and strictly Eulerian
numerical methods are being overtaken by semi-Lagrangian methods. It is curious that some problems admit explicit solutions in one formulation but not in the other. Irrotational flow past a circular cylinder admits an explicit Eulerian solution, but the Lagrangian solution is not explicit. The latter is presented here simply to make the point. On the other hand, there is no explicit Eulerian solution for the Gerstner wave. Nor are there for its generalizations, the Ptolemaic vortices of Yakubovich and Zenkovich (2001). There are analytical Lagrangian solutions for planar flows of real fluids, typically near flat plates. The Navier–Stokes equations for steady, incompressible viscous flow in a flat-plate boundary layer were simplified by Prandtl (Schlichting, 1960); as pointed out by Blasius (Schlichting, 1960), Prandtl’s equations admit a single similarity variable, and the resulting nonlinear ordinary differential equation may be solved numerically. It is shown here that the Lagrangian form of Prandtl’s equations admit two similarity variables, one of which includes time, leading to a pair of partial differential equations.

The Lagrangian formulation may be derived from the Eulerian by a transformation of variables, but the transformation is flow dependent. The two formulations are therefore sufficiently different from a mathematical point of view that the general solvability of the Lagrangian must be addressed. Indeed, the increasing interest in numerical Lagrangian fluid dynamics motivates the question: is the computer really computing a flow?

It has long been recognized that the Lagrangian formulation is natural for the analysis of conserved passive tracers. The formulation for diffusing tracers is greatly complicated by the appearance of the Jacobi matrix, but assuming the strain components are uniform in space permits an analytical solution. The assumption turns out to be a valid approximation for turbulent diffusion on a broad range of scales; the Lagrangian solution developed throughout Part III provides a unifying theoretical development of the many subranges of homogeneous turbulence, and for diffusion of concentration gradients. The results go beyond mere dimensional consistency or similarity, correctly generating functional forms in subranges where alternative forms coexist, some of which are dimensionally consistent but wrong. Relative dispersion is shown to interact with spatially nonuniform plankton growth rates to destroy spatial patchiness in the plankton concentration. Part III, which offers a coherent and strictly Lagrangian presentation of turbulent diffusion ranging from microscales in liquid mercury to planetary scales in the stratosphere, is a completely reworked, reargued and augmented edition of an essay which first appeared in Reviews of Geophysics (Bennett, 1987).

No coherent presentation of Lagrangian fluid dynamics appears to have been offered prior to this book, but there are comprehensive accounts of
a number of hybrid formulations. Their being both hybrid formulations and well described elsewhere, there is no need to cram them in here. The Abridged Lagrangian History Direct Interaction Approximation (Kraichnan, 1965; Frisch, 1995) is a perturbative development of stationary, isotropic turbulence. The formulation is indeed hybrid, having both Lagrangian and Eulerian aspects. “ALHDIA” yields the correct self-similar inertial subrange, while an analogous but strictly Eulerian formulation does not. ALHDIA also yields the viscous subrange observed definitively in a tidal channel in British Columbia (Grant, Stewart and Moilliet, 1962); as such the theory is one of the great unsung victories of middle twentieth century physics. The hybrid Lagrangian formulation by Andrews and McIntyre (1978) permits Reynolds’ averaging without loss of operator form. Applied to the atmosphere, the Lagrangian mean formulation facilitates the analysis of beams of internal waves. As repeatedly mentioned here, semi-Lagrangian numerical methods are pervading all of computational fluid dynamics; there are many introductory accounts (e.g., Durran, 1999). Finally come random flight models, which take the form of stochastic differential equations. The models are traditionally if mistakenly described as Lagrangian simulations. After all, they originated in Einstein’s theory of the Brownian motion of minute but distinct particles in water (Pais, 1982). Stochastic differential equations are, as far as scientific content is concerned, no more than elegant algorithms for solving the associated diffusion equations, and the approximate closures that lead from the true probabilistic Lagrangian kinematics to the diffusion equations are profoundly suspect. Nevertheless, Rodean (1996) presents a comprehensive treatment of Monte Carlo simulation of turbulent diffusion. Only a very brief outline is included here, with application again to plankton dynamics. The emerging Lagrangian observing technologies that so much motivate this book are reviewed in Part IV. The brief data survey includes many World Wide Web addresses for sites supporting these technologies, especially oceanographic surface ‘drifters’ and subsurface ‘floats’.

It is shown in Chapter 7 of Part II that simple wave solutions of infinitesimal amplitude may be developed in the Lagrangian framework, just as in the Eulerian framework. Sums of the Eulerian wave solutions have routinely been fitted to real data, but on scales that deny the assumptions upon which the simple wave solutions are based such as an unbounded, uniform and constant medium of propagation. Yet we continue to torture the real atmosphere and real ocean on this Procrustean bed of simple wave expansions. The practice should be deemphasized in favor of inverse modeling, that is, finding fields that simultaneously give good fits to the finite amplitude equations of fluid dynamics in a realistically shaped and realistically stratified ocean basin, and
to real ocean data. Both fits should be sought within hypothesized levels of error. By implication a dynamical model should include not just the equations of motion, initial conditions and boundary conditions, but also quantitative estimates of the errors in each of these component. Any failure to fit would most likely indicate an overoptimistically small prior for the dynamical errors, that is, something new would have been learned about ocean dynamics.

The Eulerian theory of oceanic and atmospheric inverse modeling may be found elsewhere (Bennett, 1992, 2002; Wunsch, 1996). Emerging methods of Lagrangian inverse modeling and Lagrangian data assimilation in general are introduced in Part IV.

Again, dynamical investigations of fluid motion must move beyond approximate analytical solutions and “forward” numerical integrations of the dynamics, followed by simple comparisons with data. In the preferable inverse calculations, the dynamical constraints need not be satisfied exactly, so the conventional dynamical insights obtained by closely evaluating Eulerian term balances do not apply in general. In any event, the term balance approach is fraught with difficulties on planetary scales, since many processes contribute to the balances as a rule and their respective roles in the balances vary substantially over the ocean basin in question. The search for local dynamical insights must be complemented with new and advanced skills at tracking fluid particles, estimating the convergence and divergence of these tracks and assessing the impact of such kinematic processes on the evolving pressure gradients, that is, on the dynamics. Much experience is needed, in order that insights may be drawn from the combination of inverse modeling and the Lagrangian perspective. For instance, Eulerian analysis of deep float data routinely involves unconstrained linear regression, for the estimation of the Eulerian pressure from the float tracks. Yet pressure is not the dynamically appropriate scalar field from the Lagrangian perspective. The ocean analyst should instead estimate the scalar field of Cauchy and Weber, in a manner consistent with Lagrangian kinematics and dynamics. If this book is effective, the next generation of physical oceanographers will be able to do so.

Ulterior motive

It should be evident that considerable amounts of mathematical needlepoint are required for the Lagrangian analysis of fluid dynamics. Today’s students have a marvelous facility with computers, even though their manipulative skills are less honed. Equally admirable are the students of an earlier generation who could knock off the Tripos questions in Whittaker and Watson’s
Modern Analysis. The author falls between the two generations, yet wishes
to provide some opportunities and encouragement to today's students so that
they might acquire some of the older masteries.

Corvallis, 2005.
Acknowledgments

Many figures have been reproduced from other sources with the kind permission of the authors and the copyright holders: Mark Abbott (Figures 15.8, 15.9), George Boer (Figure 11.17), Frank Champagne (Figure 12.1), Russ Davis (Figure 11.12), Joseph Er–El (Figures 11.10, 11.11), Howard Freeland (Figures 15.4, 15.5, 15.6, 15.7), Ann Gargett (Figures 12.2, 13.3), Christopher Garrett (Figure 15.1), Carl Gibson (Figure 13.2), Harold Grant (Figure 11.15), Robert Kraichnan (Figure 11.16), Joseph LaCasce (Figures 11.13, 16.1, 16.2), John Lumley (Figure 2.2), James McWilliams (Figure 11.7), John Middleton (Figures 15.2, 15.3), Robert Molinari (Figures 16.3, 16.4, 16.5), Pierre Morel (Figure 11.6), James O’Brien (Figure 15.10), Allan Robinson (Figure 11.7), Paul Sullivan (Figure 11.9), American Association for the Advancement of Science (Figure 15.1), American Geophysical Union (Figures 10.1, 11.12, 12.3, 13.1, 15.2, 15.3, 16.3, 16.4, 16.5), American Institute of Physics (Figure 11.16), American Meteorological Society (Figures 11.6, 11.10, 11.11, 11.17, 12.1), Cambridge University Press (Figures 11.3, 11.9, 11.15, 12.2, 13.3), Elsevier (Figures 11.20, 15.8, 15.9, 15.10), Sears Foundation for Marine Research (Figures 11.13, 12.4, 15.4, 15.5, 15.6, 15.7, 16.1, 16.2), and Springer–Verlag (Figure 11.7). The quote from a WOCE Newsletter in Chapter 14 is made with thanks to Peter Niiler. All the reproductions and all the new line drawings were made by David Reinert. Boon Chua recomputed Figure 10.1.

William McMechan typeset the first draft of the manuscript. Drafting began when the author was supported by the Visiting Scientist Program of the University Corporation for Atmospheric Research, and was located at the Office of Naval Research Science Unit, Fleet Numerical Meteorology and Oceanography Center, Monterey CA. It is a great pleasure to acknowledge the hospitality and the productive environment provided by Captain Joseph Swaykos USN and his entire staff at “Fleet Numerical.”
So much is gratefully owed to Ken Blake at Cambridge University Press for his cheerful patience, and for his sound advice. Many colleagues provided unwitting encouragement by remarking that a book on Lagrangian fluid dynamics was a good idea. One can only hope that the result is what they had in mind.