
1 Introduction and motivation

For a given document collection D = {D1, D2, . . . , Dm} and a query Q

one often is concerned with the following basic problems:

1. Find documents in D “related” to the query. If, for example, a “dis-

tance” between two documents Di and Dj is given by the function

d(Di , Dj ) and a threshold tol > 0 is specified one may be inter-

ested in identifying the document subset Dtol ⊆ D defined by

Dtol = {D : D ∈ D, d(Q, D) < tol}. (1.0.1)

2. Partition the collection D into disjoint subcollections π1, π2, . . . , πk

(called clusters) so that the documents in a cluster are more similar

to each other than to documents in other clusters. The number of

clusters k also has to be determined.

When “tight” clusters πi , i = 1, . . . , k are available “representatives”

ci of the clusters can be used instead of documents to identify Dtol.

The substitution of documents by representatives reduces the data set

size and speeds up the search at the expense of accuracy. The “tighter”

the clusters are the less accuracy is expected to be lost. Building “high

quality” clusters is, therefore, of paramount importance to the first

problem. Applications of clustering to IR are in particular motivated by

the Cluster Hypothesis which states that “closely associated documents

tend to be related to the same requests.”
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Introduction and motivation

The World Wide Web provides a huge reservoir of information and

the result of a query to a search engine can return thousand of pages.

Clustering can be used to partition these results into groups each of

which captures a particular aspect of the query. So that, for example,

when the query is “virus” results related to “computer virus” will be

placed in one cluster, while the results related to “viruses that cause

colds” will be located in another one. A number of Internet search

engines cluster search results thus providing a user with an efficient

navigation tool.1 Natural steps to approach the two above-mentioned

problems are:

Step 1. Embed the documents and the query into a metric space.

Step 2. Handle problems 1 and 2 above as problems concerning

points in the metric space.

This book discusses in detail a particular family of algorithms that

clusters a finite data set A in a finite-dimensional Euclidean space. The

problem first presented as a discrete optimization problem of finding

the “optimal” k-cluster partition of the data set (as this is traditionally

done in clustering literature). Next we state the clustering problem

as a continuous optimization problem to which various optimization

techniques are applied. The book also discusses different choices of

“distance-like” functions with a particular emphasis on Bregman and

Csiszar divergences that already found many useful applications in

optimization and have been recently introduced in machine learning

and clustering literature.

Document collections are often changing with time (new docu-

ments may be added to the existing collection and old documents may

be discarded). It is, therefore, of interest to address the clustering prob-

lem under the assumption D = D(t) (i.e., the document collection D is

time-dependent).

1 See, for example, http://www.groxis.com,http://www.iboogie.tv,http://www.kartoo.com,
http://www.mooter.com/, and http://vivisimo.com
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1.1. A way to embed ASCII documents

1.1. A way to embed ASCII documents into a
finite-dimensional Euclidean space

A vector space model maps documents into vectors in a finite-

dimensional Euclidean space. A brief description of perhaps the sim-

plest vector space model is the following. First, a sorted list of words

that occur in all the documents is built, this list serves as a dictionary.

Words that belong to a stop list2 are removed from the dictionary. If the

number of distinct words in the dictionary is n, then a vector ai ∈ Rn

is built for document Di , i = 1, . . . , m as follows: the first coordinate

ai [1] of ai is the number of times the first word of the dictionary occurs

in Di (if the word does not occur in Di , then ai [1] = 0). The second co-

ordinate ai [2] is the number of times the second word of the dictionary

occurs in Di , and so on.

We illustrate the construction by a simple example. Consider the

following collection3:

D1 = We expect a lot from our search engines.

D2 = We ask them vague questions about topics that we’re un-

familiar with ourselves and in turn anticipate a concise, or-

ganize response.

D3 = We type in principal when we meant principle.

After the stop words removal the sorted dictionary contains 17

words:

anticipate, concise, engines, expect, lot, meant, organize, prin-
cipal,

principle, questions, response, search, topics, turn, type, unfa-
miliar, vague.

2 A stop list is a list of words that are believed to have a little or no value as search or
discrimination terms. For example, the stop list from the SMART system at Cornell
University can be found at ftp://ftp.cs.cornell.edu/pub/smart/english.stop

3 The text is borrowed from [16]
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Introduction and motivation

The vector space dimension n = 17, and we will be building vectors in

R17. For example, the vector a1 corresponding to the document D1 is

given by

a1 = (0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)T.

The simple example indicates that one can expect sparse high-

dimensional vectors (this is indeed the case in IR applications). A

“term by document” matrix is the n × m matrix with columns being the

vectors ai , i = 1, . . . , m. Each column of the matrix A= [a1, . . . , am]

represents a document and each row corresponds to a unique term

in the collection. While this book is mainly concerned with document

clustering, one can consider word/term clustering by focusing on rows

of the “term by document” matrix. In fact simultaneous co-clustering

of columns and rows may benefit separate clustering of columns only

or rows only.

It is not uncommon that coordinates of ai are weighted frequencies

(and not just raw counts of word occurrences). Vectors ai are usu-

ally L2 normalized so that ‖ai‖2 = (
∑

a2
i [ j])

1
2 = 1. Often words are

stemmed, that is, suffixes and, sometimes, also prefixes are removed so

that, for example, an application of Porter stemming algorithm to the

words “study”, “studying”, and “studied” produces the term (not even

an English word!) “studi.” Porter stemming reduces the dictionary by

about 30% and saves the memory space without seriously compro-

mising clustering quality of English texts (handling Semitic languages

like Arabic or Hebrew is much more different in this respect). In an

attempt to further reduce the dimension of the vector space model

often only a subset of most “meaningful” words is selected for the

document–vectors construction.

A typical vector resulting from mapping a text into a finite-

dimensional Euclidean space is high dimensional, sparse, and L2 nor-

malized. So, for example, the vector a1 after normalization becomes

a1 =
(

0, 0,
1
2
,

1
2
,

1
2
, 0, 0, 0, 0, 0, 0,

1
2
, 0, 0, 0, 0, 0

)T

.
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1.2. Clustering and this book

This book is concerned with clustering a finite set A of vectors in Rn.

Motivated by IR applications it is often (but not always) assumed that

the vectors are L2 normalized and their coordinates are nonnegative

real numbers.

1.2. Clustering and this book

Unlike many books on the subject this book does not attempt to cover

a wide range of clustering techniques, but focuses on only three basic

crisp or exclusive clustering algorithms4 and their extensions. These

algorithms are:

1. k-means,

2. Principal Direction Divisive Partitioning (PDDP),

3. Balanced Iterative Reducing and Clustering using Hierarchies

(BIRCH).

Most of the book is devoted to the k-means family of algorithms

and their interconnections. Applications of the k-means algorithms

equipped with a variety of distance-like functions are discussed in de-

tail. In order to apply k-means one needs an initial partition of the data

set. A common technique to address this problem is to perform mul-

tiple runs of k-means, each with a randomly selected initial centroids

(which is by itself not a trivial task in a high-dimensional space), and

then to select the “best” partition. We, however, advocate applications

of algorithms like PDDP and BIRCH for building initial partitions for

k-means.

Both PDDP and BIRCH are designed to generate partitions of

large data sets. While PDDP is especially efficient with sparse and

high-dimensional data (that, in particular, arises in IR applications),

BIRCH is capable of handling general data sets residing in a finite-

dimensional Euclidean space.

4 That is, each object is assigned to a single cluster
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Introduction and motivation

The problem of the “right” choice of k, the number of clusters, is

not discussed in the book.

Project 1.2.1. For a given ASCII document D:

1. Build an alphabetical list of words that occur in D.

2. For each word compute and record the corresponding frequency.

While the book is concerned with some mathematical techniques for

clustering it is worthwhile to keep in mind that clustering is a real

life problem that is difficult to cast in a mathematical formalism. El-

Yaniv and Souroujon [52] illustrate the difficult choice facing clustering

algorithms: “. . . consider a hypothetical data set containing articles by

each of two authors such that half of the articles authored by each

author discusses one topic, and the other half discusses another topic.

There are two possible dichotomies of the data which could yield two

different bi-partitions: one according to topic, and another according

to writing style.”

Often good clustering results depend on the “right” choice of sim-

ilarity measure. Well, “a picture is worth ten thousand words,” so we

conclude this section with a picture of two very different object (see

Figure 1.1). Should they belong in the same cluster? How to find the

“right” similarity measure? What is the “goal” of a clustering proce-

dure? While the book does not address these important questions it

presents a number of techniques to generate different similarity mea-

sures and algorithms for clustering large high-dimensional data sets.

1.3. Bibliographic notes

The Cluster Hypothesis is introduced in [135]. The role of Breg-

man divergence in machine learning is discussed, for example,

in [28, 76, 91, 92, 120]. A class of unsupervised statistical learning

algorithms formulated in terms of minimizing Bregman divergences
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1.3. Bibliographic notes

Figure 1.1: Find the difference.

is presented in [136]. Clustering with Bregman divergence is reported

in the award-winning paper [8], the extended version of the results

is reported in [9]. Clustering with Csiszar divergence was introduced

recently in [83–85].

For a description of document processing consult [16], for a detailed

discussion see for example [58, 88, 89].

Simultaneous co-clustering of rows and columns of a matrix with

nonnegative entries is considered in [122] via the information bottle-

neck method. Iterative double clustering built on ideas of [121] is pro-

posed in [52]. An application of bipartite spectral graph partitioning for

simultaneous co-clustering is suggested in [33]. In [15] the incremental

k-means-type algorithm with Kullback–Leibler distance-like function

is used to cluster rows and columns of the matrix, the batch counterpart

of the algorithm is derived in [41].

A review of term weighting formulas for the vector space model is

provided in [27]. For Porter stemming algorithm see [113]. For a partial
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Introduction and motivation

list of general clustering-related references the reader is advised to

consult, for example [2–4,10,14,46,48,50,54,56,59,63–65,68,71,72,75,

79, 86, 87, 105, 106, 108, 124, 127, 137, 138] .

Finally, we would like to draw the reader’s attention to the new

emerging field of multiway clustering. The multiway clustering is mo-

tivated mainly by computer vision applications and the existing publi-

cations are a few (see e.g. [1, 62, 142, 149]).
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2 Quadratic k-means algorithm

This chapter focuses on the basic version of the k-means clustering al-

gorithm equipped with the quadratic Euclidean distance-like function.

First, the classical batch k-means clustering algorithm with a general

distance-like function is described and a “best representative” of a clus-

ter, or centroid, is introduced. This completes description of the batch

k-means with general distance-like function, and the rest of the chap-

ter deals with k-means clustering algorithms equipped with the squared

Euclidean distance.

Elementary properties of quadratic functions are reviewed, and the

classical quadratic k-means clustering algorithm is stated. The follow-

ing discussion of the algorithm’s advantages and deficiencies results in

the incremental version of the algorithm (the quadratic incremental

k-means algorithm). In an attempt to address some of the deficiencies

of batch and incremental k-means we merge both versions of the al-

gorithm, and the combined algorithm is called the k-means clustering

algorithm throughout the book.

The analysis of the computational cost associated with the merger

of the two versions of the algorithm is provided and convexity prop-

erties of partitions generated by the batch k-means and k-means algo-

rithms are discussed. Definition of “centroids” as affine subspaces of Rn

and a brief discussion of connections between quadratic and spherical

k-means (formally introduced in Chapter 4) complete the chapter.
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Quadratic k-means algorithm

2.1. Classical batch k-means algorithm

For a set of vectors A = {a1, . . . , am} ⊂ Rn, a prescribed subset C of Rn

and a “distance” function d(x, a) define a centroid c = c (A) of the set

A as a solution of the minimization problem

c = arg min

{∑
a∈A

d(x, a), x ∈ C
}

. (2.1.1)

The quality of the set A is denoted by Q(A) and is defined by

Q(A) =
m∑

i=1

d (c, a) , where c = c (A) (2.1.2)

(we set Q(∅) = 0 for convenience). Let � = {π1, . . . , πk} be a partition

of A, that is, ⋃
i

πi = A, and πi ∩ π j = ∅ if i 	= j.

We abuse notations and define the quality of the partition � by

Q(�) = Q(π1) + · · · + Q(πk). (2.1.3)

We aim to find a partition �min = {πmin
1 , . . . , πmin

k } that minimizes the

value of the objective function Q. The problem is known to be NP-

hard, and we are looking for algorithms that generate “reasonable”

solutions.

It is easy to see that centroids and partitions are associated as fol-

lows:

1. Given a partition � = {π1, . . . , πk} of the set A one can define the

corresponding centroids
{
c (π1) , . . . , c (πk)

}
by:

c (πi ) = arg min

{∑
a∈πi

d(x, a), x ∈ C
}

. (2.1.4)

2. For a set of k “centroids” {c1, . . . , ck} one can define a partition

� = {π1, . . . , πk} of the set A by:

πi = {
a : a ∈ A, d(ci , a) ≤ d(cl , a) for each l = 1, . . . , k

}
(2.1.5)
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