Cambridge University Press

978-0-521-85252-4 - A Practical Introduction to the Simulation of Molecular Systems: Second Edition
Martin J. Field

Excerpt

More information

1

Preliminaries

1.1 Introduction

The aim of this book is to give a practical introduction to performing simulations
of molecular systems. This is accomplished by summarizing the theory underlying
the various types of simulation method and providing a programming library,
called pDynamo, which can be used to perform the calculations that are described.
The style of the book is pragmatic. Each chapter, in general, contains some theory
about related simulation topics together with descriptions of example programs
that illustrate their use. Suggestions for further work (or exercises) are listed at
the end.

By the end of the book, readers should have a good idea of how to simulate
molecular systems as well as some of the difficulties that are involved. The
pDynamo library should also be a reasonably convenient starting point for those
wanting to write programs to study the systems they are interested in. The fact
that users have to write their own programs to do their simulations has advantages
and disadvantages. The major advantage is flexibility. Many molecular modeling
programs come with interfaces that supply only a limited range of options. In
contrast, the simulation algorithms in pDynamo can be combined arbitrarily and
much of the data generated by the program is available for analysis. The drawback
is that the programs have to be written — a task that many readers may not be
familiar with or have little inclination to do themselves. However, those who
fall into the latter category are urged to read on. pDynamo has been designed
to be easy to use and should be accessible to everyone even if they have only a
minimum amount of computing experience.

This chapter explains some essential background information about the pro-
gramming style in which pDynamo and the example programs are written. Details
of how to obtain the library for implementation on specific machines are left to
the appendices.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521852528
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-85252-4 - A Practical Introduction to the Simulation of Molecular Systems: Second Edition
Martin J. Field

Excerpt

More information

2 Preliminaries
1.2 Python

All the example programs in this book and much of the programming library
are written in the programming language Python. The rest of the library, which
most readers will never need to look at, consists of code for which computational
efficiency is paramount and is written in C. The reasons for the choice of Python
were threefold. First, it is a powerful and modern programming language that
is fun to use! Unlike languages such as C and FORTRAN, it is an interpreted
language, which means that programs can be run immediately without going
through separate compilation and linking steps. Second, Python is open-source
software that is free and runs under a wide variety of operating systems and, third,
there is a very active development community that is continually enhancing the
language and adding to its capabilities.

Most computer languages are easiest to learn by example and Python is no
exception. The following, simple program illustrates several basic features of the
language:

nn llExample 0 . nun

import math

1
2
3
4
5 # . Define a squaring function.
6 def Square (x):

7 return x**2

8

9

. Create a list of integers.
10values = range (10)
11
12# . Loop over the integers.
18for i in values:
14 x = float (i)
15 print "%5d%10.5£%10.5£%10.5£" \

% (i, x, math.sqrt (x), Square (x))

Line 1 is the program’s documentation string which, in principle, should give
a concise description of what the program is supposed to do. All the
examples in this book, however, have documentation strings of the type
"""Example n.""" to save space and to avoid duplicating the expla-
nations that occur in the text.

Lines 2, 4, 8 and 11 are blank and are ignored.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521852528
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-85252-4 - A Practical Introduction to the Simulation of Molecular Systems: Second Edition
Martin J. Field

Excerpt

More information

1.2 Python 3

Line 3 makes the standard Python module math accessible to the program. Python
itself and programs written using Python — including pDynamo — consist
of modules which must be explicitly imported if their contents are to be
used.

The import statement has a number of different forms and the one
shown is the simplest. With this form, module items are accessed by
prefixing the item’s name with the module name, followed by a dot (.)
character. Thus, the function sqrt from the module math, which is used
on line 15 of the program, is accessed as math.sqgrt. An alternative
form, which is sometimes preferable, is from math import sqgrt.
This makes it possible to refer to the function sqgrt by its name only
without the math. prefix.

Lines 5, 9 and 12 are comments which are included to make the program easier
to understand. Python ignores all characters from the hash character (#)
until the end of the line.

Lines 67 define a very simple Python function. Functions are named collections
of instructions that can be called or invoked at different points in a
program. They behave similarly in Python to functions in other languages,
such as C and FORTRAN.

Line 6 is the function definition line. It starts with the word def which
tells Python that a function definition is coming and terminates with a
colon (). The second word on the line, Square, is the name that we are
giving to the function and this is followed by the function’s arguments
which appear in parentheses. Arguments are variables that the function
needs in order to work. Here there is only one, x, but there can be many
more.

The function definition line is followed by the body of the function. This
would normally consist of several lines but here there is only one, line 7.
Python is unusual among programming languages in that the lines in the
function body are determined by line indentation. In other languages, such
blocks of code are delimited by specific characters, such as the matching
braces {...} of C or the FUNCTION ... END FUNCTION keywords of
ForTrAN 90. The number of spaces to indent by is arbitrary — in this book
it is always four — but all lines must be indented by the same amount
and instructions after the end of the function must return to the original
indentation level.

Line 7 is very simple. The second part of the line contains the expression
x**2 which computes the square of the function’s argument x. The **
symbol denotes the power operator and so the expression tells Python
to raise x to the power of 2. The first part of the line is the keyword

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521852528
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-85252-4 - A Practical Introduction to the Simulation of Molecular Systems: Second Edition
Martin J. Field

Excerpt

More information

4 Preliminaries

return which says that the result of the squaring calculation is to be
returned to the place from which the function was called.

Line 10 is the first executable line of the example and illustrates several more
features of the Python language — built-in functions, sequence types and
variable assignment. range is one of Python’s built-in functions and
is always available whenever the Python interpreter is invoked. It pro-
duces a sequence of integers, in this case ten of them, starting with
the value 0 and finishing with the value 9. Python, like C, but unlike
ForTRAN, starts counting from zero and not from one. The integers are
returned as a [list which is one of Python’s built-in sequence data types
and is one of the things that makes Python so attractive to use. Finally
the list of integers is assigned to a variable with the name values.
Python differs from many languages in that variables do not need to
be declared as being of a particular type. In C, for example, an integer
variable would have to be declared with a statement such as °
;7 before it could be used. These declarative statements do not exist in
Python and so values can be assigned arbitrarily to refer to any data
type.

Line 13 shows one of the forms of iteration in Python. The statement takes the
list referred to by values and assigns each of its elements to the variable
i in turn. The iteration stops when the end of the list is reached. The
lines over which iteration is to occur are determined by line identation in
exactly the same way as those in the body of a function.

Line 14 is the first line of the loop specified by the for construct in line 13. It
takes the integer referred to by the variable i, converts it to a floating-
point number using the built-in function £1loat and then assigns it to the
variable x.

Line 15 is printed as two lines in the text, due to the restricted page width, but
it is logically a single statement. The presence of the backslash character
(\) at the end of the line indicates to Python that the subsequent line is
to be treated as a continuation of the current one.

The statement prints the values of i and of x, the square root of x, which
is calculated by invoking the function sqrt from the module math,
and the square of x, calculated using the previously defined function
Square. These items are grouped together at the end of the line in a
tuple. Tuples, like lists, are one of Python’s built-in sequence data types
and are constructed by enclosing the items that are to be in the tuple in
parentheses. Tuples differ from lists, though, in that they are immutable,
which means that their contents cannot be changed once they have been
created.

‘int i

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521852528
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-85252-4 - A Practical Introduction to the Simulation of Molecular Systems: Second Edition
Martin J. Field

Excerpt

More information

1.3 Object-oriented programming 5

The style in which the quantities are printed is determined by the
Sformatting string, which is enclosed in double quotes " ". This is placed
after the print keyword and is separated from the tuple of items to
be printed by the % character. Python employs a syntax for formatting
operations that is very similar to that of the C language. Output fields start
with a % character and so, in this example, there are four output fields in
the string, one for each of the items to be printed. The first output field is
%5d, which says that an integer, coded for by the letter d, is to be printed
in a field 5 characters wide. The remaining fields are identical and have
the form $10.5f. They are for the output of floating-point numbers (£)
in fields 10 characters wide but with 5 of these characters occurring after
the decimal point.

It is not, of course, possible to master a language from a single, short program
but readers should gain in expertise and come to appreciate more fully the capa-
bilities of the language as they work through the examples and exercises in the
book. One of the great advantages of Python for learning is that it can be used
interactively and so it is quick and easy to write simple programs to test whether
one really understands what the language is doing.

1.3 Object-oriented programming

Python admits various programming styles but all the modules in pDynamo are
written using an object-oriented approach in which the basic unit of programming
is the class. A class encapsulates the notion of an object, such as a file or a
molecule, and groups together the data or attributes needed to describe the object
and the functions or methods that are required to manipulate it. Classes are used
by instantiating them so that, for example, a program for modeling the molecules
methanol and water would create two instances of the class molecule, one to
represent methanol and one water.

There are other important aspects of object-oriented programming that
pDynamo employs but which will only be alluded to briefly, if at all, later on.
Two of these are inheritance and polymorphism. Inheritance is the mechanism
by which a new class is defined in terms of an existing one. For example,
a class for manipulating organic molecules could be derived from a more
general class for molecules. The new class would inherit all the attributes
and methods defined by its parent class but would also have attributes and
methods specific for organic molecules. Polymorphism is related to inheritance
and is the ability to redefine methods for derived classes. Thus, the general
molecule class could have a method for chemical reactions but this would

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521852528
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-85252-4 - A Practical Introduction to the Simulation of Molecular Systems: Second Edition
Martin J. Field

Excerpt

More information

6 Preliminaries

be overridden in the organic molecule class because the rules for implement-
ing reactions for organic molecules are different from those of the general
case.

It is time to consider a simple, hypothetical example. Suppose there were a
class hierachy designed for writing to text files. The base class would be a general
class, TextFileWriter, and there would be a subclass, DataFileWriter,
designed for writing either a specific type of data or data in a specific format.
The base class has the following (partial) specification:

class TextFileWriter (object):
"""The base class for objects that write to text files."""

1
2
5
4 def __init__ (self, filename):

5 """Tnstance initializer from |filename|."""
6 self .name = filename

7 . other initialization here ...

8
9

def Close (self):
10 """Close the file."""
11 ... contents here ...

Line 1 says that a class of name TextFileWriter is being defined and that
it is subclassed from the class object which is the base class for all
Python objects.

Line 2 is the documentation string for the class.

Lines 4 to 7 define a special method, _ _init_ _, thatis called when an instance
of a class is created.

The method has two arguments. The first, self, denotes the instance
of the class that is calling the method (hence the name self). Python
requires that this argument appears in the specification of all instance
methods in a class but that it should not be present when a method is
actually invoked. We shall see examples of this later in the section. The
second argument, filename, gives the name of the file to which data
are to be written.

The body of the method, line 6 onwards, would be used to perform
various ‘start-up’ operations on the newly created instance. This could
include the initialization of various attributes that the instance may need
and the setting up of the necessary data structures for writing to a file
with the given name. The only operation that we show explicitly is on line
6 because it illustrates how an attribute of an instance can be defined —
in this case, the attribute, name, of the instance self that points to the

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521852528
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-85252-4 - A Practical Introduction to the Simulation of Molecular Systems: Second Edition
Martin J. Field

Excerpt

More information

1.3 Object-oriented programming 7

name of the file. The dot-notation identifies the attribute as belonging to
the instance and is employed when accessing an attribute as well as for
its definition.

Lines 9 to 11 define a method, Close, that would be called when writing to the
file has terminated.

The subclass is specified as follows:

class DataFileWriter (TextFileWriter):
"""A class for writing data to a text file."""

"""WYrite |datal|l to the file."""

1

2

57

4 def WriteData (self, data):
5

6 . contents here ...

Line I defines DataFileWriter as a subclass of TextFileWriter.
Lines 4 to 6 define a method, WriteData, that would be called to write the
argument data to the file.

The methods _ _init and Close are absent from the specification
of the subclass, which means that they are inherited from the parent class,
TextFileWriter, and behave in an identical fashion.

Once the classes and its methods have been defined, data could be writ-
ten to a file of the class DataFileWriter with the following series of
commands:

1 datafile = DataFileWriter ("myfile.dat")

2 datafile.WriteData (data)

3 datafile.Close ()

4 print "Data written to the file", datafile.name

Line I creates an instance of the class DataFileWriter that is called
datafile. The instance is produced using the name of the class
followed by parentheses that contain the arguments, excluding self,
that are to be passed to the class’s _ _init_ _ method. In this case
there is a single argument, "myfile.dat", which is a character string
that contains the name of the file to be written. In the rest of this book,
we shall refer to statements in which instances of a class are generated
using the class name as constructors.

Line 2 calls the WriteData method of the instance with the data to be written.
Methods of an instance are most usually invoked using the dot-notation.
This is similar to the way in which the attributes of an instance are

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521852528
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-85252-4 - A Practical Introduction to the Simulation of Molecular Systems: Second Edition
Martin J. Field

Excerpt

More information

8 Preliminaries

accessed but with the difference that the method’s arguments appear
in parentheses after the method name. As discussed above, the self
argument that occurs in the specification of the method is absent.

Line 3 closes the file as writing to the file has terminated. The Close method
takes no arguments but parentheses are still required.

Line 4 prints a short informational message. This version of the print statement
is simpler than that used previously in that no formatting information is
present. Instead, Python chooses suitable defaults for the way in which
the string "Data written to the file" and the name attribute of
datafile are written.

Although the class notation is very elegant, it can be a little cumbersome to
use. This is why, for many classes, pDynamo supplies ‘helper’ functions that
provide a shorthand way of using the class without having to explicitly instantiate
it. An appropriate helper function for the class DataFileWriter would simply
be one that ‘wraps’ the four-line program given previously. It would have the
form:

def DataFile_Write (filename, data):
"""Write |datal to the data file with name |filename]."""
datafile = DataFileWriter (filename)
datafile.WriteData (data)
datafile.Close ()
print "Data written to the file", datafile.name

and would be used as follows

DataFile_Write ("myfile.dat", data)

1.4 The pDynamo library

Like many large Python libraries, pDynamo is hierarchically organized into pack-
ages and modules. A package is a named collection of modules that are put
together because they perform logically related tasks, whereas a module is a
collection of Python classes, functions and other instructions that are grouped
in a single Python file. As we saw in the example program of Section 1.2,
modules from a library can be used in Python programs by importing them
with the import keyword. The same syntax is possible with packages, so the

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521852528
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-85252-4 - A Practical Introduction to the Simulation of Molecular Systems: Second Edition
Martin J. Field

Excerpt

More information

1.5 Notation and units 9

statement import mypackage would make the contents of the package called
mypackage accessible.

pDynamo consists of three principal packages. The first and most fundamental
package is pCore. It contains modules implementing various basic data structures
and algorithms that are independent of molecular applications. The second package
is pDynamo, which has modules for representing and manipulating molecular
systems and for performing molecular simulation. The third package is pBabel,
which has modules that read and write information for chemical systems in various
formats. The packages are arranged hierarchically because pBabel depends upon
both pDynamo and pCore, pDynamo upon pCore, but not pBabel, and
pCore upon neither.

The purpose of this book is not to provide a detailed description of each of the
pDynamo packages. Instead, only a subset of pDynamo’s classes and functions
will be introduced as needed. Some, whose behaviour and construction are deemed
important for the arguments being pursued in the text, will be described in detail,
whereas others will be mentioned only in passing. A summary of all the items
from the pDynamo library appearing in the book is given in Appendix 1, whereas
full documentation will be found online with the library’s source code and the
book’s example programs.

1.5 Notation and units

To finish, a few general points about the notation and units used in this book
and the program library will be made. In the text, all program listings and the
definitions of classes, methods, functions and variables have been represented by
using characters in typewriter style, e.g. molecule. For other symbols, normal
typed letters are used for scalar quantities whereas bold face italic letters are
employed for vectors and bold face roman for matrices. Lower case letters have
generally been taken to represent the properties of individual atoms whereas upper
case letters represent the properties of a group of atoms or, more usually, the
entire system. Lower case roman subscripts normally refer to atoms, upper case
roman subscripts to entire structures and Greek subscripts to other quantities, such
as the Cartesian components of a vector or quantum chemical basis functions.
The more common symbols are listed in Tables 1.1, 1.2 and 1.3.

The units of most of the quantities either employed or calculated by pDynamo
are specified in Table 1.4. All the quantum chemical algorithms use atomic
units internally although little input or output is done in them. Nevertheless, for
completeness, Table 1.5 lists some quantities in atomic units and their pDynamo
equivalents.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521852528
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-85252-4 - A Practical Introduction to the Simulation of Molecular Systems: Second Edition
Martin J. Field

Excerpt

More information

10 Preliminaries

Table 1.1 Symbols that denote quantities for atoms or for the entire system

Symbol Description

Atomic quantities

o; Isotropic dipole polarizability for atom i

g Mass-weighted first derivatives of potential energy

a, (=¥, Acceleration of atom i

; Force on atom i

g; First derivatives of potential energy
with respect to coordinates of atom i

h;; Second derivatives of potential energy with respect to
coordinates of atoms i and j

m; Mass of atom i

D; Momentum vector for atom i

q; Vector of mass-weighted Cartesian coordinates for atom i

q; Partial charge for atom i

r; Vector of Cartesian coordinates, (x;, y;, z;), for atom i

rij Distance between two atoms i and j

s; Vector of Cartesian fractional coordinates for atom i

v, (=F, Velocity vector for atom i

w; Weighting factor for atom i

X; x Cartesian coordinate of atom i
¥ y Cartesian coordinate of atom i
Z; z Cartesian coordinate of atom i

System quantities

M Dipole-moment vector

oy Root mean square coordinate deviation between structures I and J
A 3N-dimensional vector of atom accelerations

D 3N-dimensional coordinate displacement vector

F 3N-dimensional vector of atom forces

G 3N-dimensional vector of first derivatives

Root mean square (RMS) gradient

(3N x 3N)-dimensional matrix of second derivatives
of system

Inertia matrix

3N x 3N diagonal atomic mass matrix

System observable or property

3 N-dimensional vector of atom momenta

Charge

3N-dimensional vector of atom coordinates

Centre of charge, geometry or mass

3N-dimensional vector of atom fractional coordinates

3N-dimensional vector of atom velocities

Q
]
<
w

< XROTOZS

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521852528
http://www.cambridge.org
http://www.cambridge.org

