
Chapter 1

I N T R O D U C T I O N

§1.1. Why You Should Read This Book
The technology of communication and computing advanced at a breathtaking pace
in the 20th century, especially in the second half. A significant part of this advance
in communication began some 60 years ago when Shannon published his seminal
paper "AMathematical Theory of Communication." In that paper Shannon framed
and posed a fundamental question: how can we efficiently and reliably transmit in-
formation? Shannon also gave a basic answer: coding can do it. Since that time the
problem of finding practical coding schemes that approach the fundamental limits
established by Shannon has been at the heart of information theory and commu-
nications. Recently, significant advances have taken place that bring us close to an-
swering this question. Perhaps, at least in a practical sense, the question has been
answered. This book is about that answer.

The advance came with a fundamental paradigm shift in the area of coding that
took place in the early 1990s. In Modern Coding Theory, codes are viewed as large
complex systems described by random sparse graphical models, and encoding as well
as decoding are accomplished by efficient local algorithms.The local interactions of
the codebits are simple but the overall code is nevertheless complex (and so suffi-
ciently powerful to allow reliable communication) because of the large number of
interactions. The idea of random codes is in the spirit of Shannon’s original formu-
lation. What is new is the sparseness of the description and the local nature of the
algorithms.

These are exciting times for coding theorists and practitioners. Despite all the
progress made, many fundamental questions are still open. Even if you are not in-
terested in coding itself, however, you might be motivated to read this book. Al-
though the focus of this book is squarely on coding, the larger view holds a much
bigger picture. Sparse graphical models and message-passing algorithms, to name
just two of the notions that are fundamental to our treatment, play an increasingly
important role in many other fields as well. This is not a coincidence. Many of the
innovations were brought into the field of coding by physicists or computer scien-
tists. Conversely, the success of modern coding has inspired work in several other
fields.

Modern coding will not displace classical coding anytime soon. At any point in
time hundreds of millions of Reed-Solomon codes work hard to make your life less
error prone. This is unlikely to change substantially in the near future. But mod-
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2 introduction

ern coding offers an alternative way of solving the communications problem. Most
current wireless communications systems have already adopted modern coding.

Technically, our aim is focused on Shannon’s classical problem:wewant to trans-
mit amessage across a noisy channel so that the receiver can determine this message
with high probability despite the imperfections of the channel. We are interested in
low-complexity schemes that introduce little delay and allow reliable transmission
close to the ultimate limit, the Shannon capacity.

We start with a review of the communications problem (Section 1.2), we cover
some classical notions of codes (Sections 1.3, 1.4, 1.5, 1.7, and 1.8), and we review the
channel coding theorem (Section 1.6). Section 1.9 gives an outline of the modern
approach to coding. Finally, we close in Section 1.10 with a review of the notational
conventions and some useful facts.

§1.2. Communications Problem
Consider the following communications scenario – the point-to-point communica-
tions problem depicted in Figure 1.1. A source transmits its information (speech, au-

source channel sink

Figure 1.1: Basic point-to-point communications problem.

dio, data, etc.) via a noisy channel (phone line, optical link,wireless, storagemedium,
etc.) to a sink. We are interested in reliable transmission, i.e., we want to recreate
the transmitted information with as little distortion (number of wrong bits, mean
squared error distortion, etc.) as possible at the sink.

In his seminal paper in 1948, Shannon formalized the communications problem
and showed that the point-to-point problem can be decomposed into two separate
problems as shown in Figure 1.2. First, a source encoder transforms the source into
a bit stream. Ideally, the source encoder removes all redundancy from the source
so that the resulting bit stream has the smallest possible number of bits while still
representing the source with enough accuracy. The channel encoder then processes
the bit stream to add redundancy. This redundancy is carefully chosen to combat
the noise that is introduced by the channel.

To be mathematically more precise: we model the output of the source as a
stochastic process. For example, we might represent text as the output of a Markov
chain, describing the local dependency structure of letter sequences. It is the task of
the source encoder to represent this output as efficiently as possible (using as few bits
as possible) given a desired distortion. The distortion measure reflects the “cost” of
deviating from the original source output. If the source emits points in R

n it might

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-85229-6 - Modern Coding Theory
Tom Richardson and Rudiger Urbanke
Excerpt
More information

http://www.cambridge.org/0521852293
http://www.cambridge.org
http://www.cambridge.org


communications problem 3
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Figure 1.2: Basic point-to-point communications problem in view of the source-
channel separation theorem.

be natural to consider the squared Euclidean distance, whereas if the source emits
binary strings a more natural measure might be to count the number of positions in
which the source output and the word that can be reconstructed from the encoded
source differ. Shannon’s source coding theorem asserts that, for a given source and
distortion measure, there exists a minimum rate R = R(d) (bits per emitted source
symbol) which is necessary (and sufficient) to describe this source with distortion
not exceeding d. The plot of this rate R as a function of the distortion d is usually
called the rate-distortion curve. In the second stage an appropriate amount of redun-
dancy is added to these source bits to protect them against the errors in the channel.
This process is called channel coding.Throughout the book wemodel the channel as
a probabilistic mapping and we are typically interested in the average performance,
where the average is taken over all channel realizations. Shannon’s channel coding
theorem asserts the existence of a maximum rate (bits per channel use) at which in-
formation can be transmitted reliably, i.e., with vanishing probability of error, over
a given channel. This maximum rate is called the capacity of the channel and is de-
noted by C. At the receiver we first decode the received bits to determine the trans-
mitted information. We then use the decoded bits to reconstruct the source at the
receiver. Shannon’s source-channel separation theorem asserts that the source can be
reconstructed with a distortion of at most d at the receiver if R(d) < C, i.e., if the
rate required to represent the given source with the allowed distortion is smaller
than the capacity of the channel. Conversely, no scheme can do better. One great
benefit of the separation theorem is that a communications link can be used for a
large variety of sources: one good channel coding solution can be used with any
source. Virtually all systems in use today are based on this principle. It is important
though to be aware of the limitations of the source-channel separation theorem.The
optimality is only in terms of the achievable distortion when large blocks of data are
encoded together. Joint schemes can be substantially better in terms of complexity
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4 introduction

or delay. Also, the separation is no longer valid if one looks at multi-user scenarios.
We will not be concerned with the source coding problem or, equivalently, we

assume that the source coding problem has been solved. For us, the source emits a
sequence of independent identically distributed (iid) bits which are equally likely to
be zero or one. Under this assumption, we will see how to accomplish the channel
coding problem in an efficient manner for a variety of scenarios.

§1.3. Coding: Trial and Error
How can we transmit information reliably over a noisy channel at a strictly positive
rate?At some levelwe have already given the answer: add redundancy to themessage
that can be exploited to combat the distortion introduced by the channel. By starting
with a special case we want to clarify the key concepts.

Example 1.3 (Binary SymmetricChannel). Consider the binary symmetric chan-
nelwith cross-over probability є depicted in Figure 1.4.We denote it by BSC(є). Both

Xt Yt

1 − є

1 − є

є
є

1

-1

1

-1
Figure 1.4: BSC(є).

input Xt and output Yt are elements of ��1�. A transmitted bit is either received
correctly or received flipped, the latter occurring with probability є, and different
bits are flipped or not flipped independently. We can assume that 0 < є < 1

2 without
loss of generality.

The BSC is the generic model of a binary-input memoryless channel in which
hard decisions aremade at the front end of the receiver, i.e., where the received value
is quantized to two values. �

First Trial: Suppose that the transmitted bits are independent and that P�Xt =
+1� = P�Xt = −1� = 1

2 . We start by considering uncoded transmission over the
BSC(є). Thus, we send the source bits across the channel as is, without the insertion
of redundant bits. At the receiver we estimate the transmitted bit X based on the
observation Y . As we will learn in Section 1.5, the decision rule that minimizes the
bit-error probability, call it x̂MAP(y), is to choose that element of ��1� which max-
imizes pX �Y(x � y) for the given y. Since the prior on X is uniform, an application
of Bayes’s rule shows that this is equivalent to maximizing pY � X(y � x) for the given

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-85229-6 - Modern Coding Theory
Tom Richardson and Rudiger Urbanke
Excerpt
More information

http://www.cambridge.org/0521852293
http://www.cambridge.org
http://www.cambridge.org


codes and ensembles 5

y. Since є < 1
2 we conclude that the optimal estimator is x̂

MAP(y) = y. The prob-
ability that the estimate differs from the true value, i.e., Pb = P�x̂MAP(Y) � X�, is
equal to є. Since for every information bit we want to convey we send exactly one bit
over the channel we say that this scheme has rate 1. We conclude that with uncoded
transmission we can achieve a (rate, Pb)-pair of (1, є).

SecondTrial: If the error probability є is too high for our application, what trans-
mission strategy can we use to lower it? The simplest strategy is repetition coding.
Assume we repeat each bit k times. To keep things simple, assume that k is odd. So
if X, the bit to be transmitted, has value x then the input to the BSC(є) is the k-tuple
x , . . . , x. Denote the k associated observations by Y1, . . . , Yk . It is intuitive, and not
hard to prove, that the estimator that minimizes the bit-error probability is given by
the majority rule

x̂MAP(y1, . . . , yk) = majority of �y1, . . . , yk�.

Hence the probability of bit error is given by

Pb = P�x̂MAP(Y) � X	 k odd= P�at least 
k�2� errors occur	 = 
i�k�2

�k
i
�єi(1 − є)k−i .

Since for every information bit we want to convey we send k bits over the chan-
nel we say that such a scheme has rate 1

k . So with repetition codes we can achieve
the (rate, Pb)-pairs ( 1k ,�i�k�2 �ki�є

i(1 − є)k−i). For Pb to approach zero we have to
choose k larger and larger and as a consequence the rate approaches zero as well.

Can we keep the rate positive and make the error probability go to zero?

§1.4. Codes and Ensembles
Information is inherently discrete. It is natural and convenient to use finite fields to
represent it. The most important instance for us is the binary field F2, consisting of
�0, 1� with mod-2 addition and mod-2 multiplication (0 + 0 = 1 + 1 = 0; 0 + 1 = 1;
0 ċ 0 = 1 ċ 0 = 0; 1 ċ 1 = 1). In words, if we use F2 then we represent information in
terms of (sequences of) bits, a natural representation and convenient for the purpose
of processing. If you are not familiar with finite fields, very little is lost if you replace
any mention of a generic finite field F with F2. We write �F � to indicate the number
of elements of the finite field F, e.g., �F2 � = 2. Why do we choose finite fields? As we
will see, by using algebraic operations in both the encoding as well as the decoding
we can significantly reduce the complexity.

Definition 1.5 (Code). A code C of length n and cardinality M over a field F is a
collection ofM elements from F

n, i.e.,

C(n,M) = �x[1], . . . , x[M]�, x[m] � F
n , 1 � m � M .
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6 introduction

The elements of the code are called codewords. The parameter n is called the block-
length. �
Example 1.6 (Repetition Code). Let F = F2. The binary repetition code of length
3 is defined as C(n = 3,M = 2) = �000, 111�. �

In the preceding example we have introduced binary codes, i.e., codes whose
components are elements of F2 = �0, 1�. Sometimes it is more convenient to think
of the two field elements as ��1� instead (see, e.g., the definition of the BSC in Ex-
ample 1.3). The standard mapping is 0� 1 and 1� −1. It is convenient to use both
notations. We freely and frequently switch. With some abuse of notation, we make
no distinction between these two cases and talk about binary codes and F2 even if
the components take values in ��1�.
Definition 1.7 (Rate). The rate of a code C(n,M) is r = 1

n log�F �M. It is measured
in information symbols per transmitted symbol. �
Example 1.8 (Repetition Code). Let F = F2. We have r(C(3, 2)) = 1

3 log2 2 =
1
3 .

It takes three channel symbols to transmit one information symbol. �
The following two definitions play a role only much later in the book, but it is

convenient to collect them here for reference.

Definition 1.9 (Support Set). The support set of a codeword x � C is the set of
locations i � [n] = �1, . . . , n� such that xi � 0. �
Definition 1.10 (Minimal Codewords). Consider a binary code C, i.e., a code
over F2. We say that a codeword x � C isminimal if its support set does not contain
the support set of any other (non-zero) codeword. �

The Hamming distance introduced in the following definition and the derived
minimum distance of a code (see Definition 1.12) are the central characters in all of
classical coding. For us they only play a minor role.This is probably one of the most
distinguishing factors between classical and modern coding.

Definition 1.11 (HammingWeight andHammingDistance). Let u, v � F
n.The

Hamming weight of a word u, which we denote by w(u), is equal to the number of
non-zero symbols in u, i.e., the cardinality of the support set.TheHamming distance
of a pair (u, v), which we denote by d(u, v), is the number of positions in which u
differs from v. We have d(u, v) = d(u−v , 0) = w(u−v). Further, d(u, v) = d(v , u)
and d(u, v) � 0, with equality if and only if u = v. Also, d(ċ, ċ) satisfies the triangle
inequality

d(u, v) � d(u, t) + d(t, v),
for any triple u, v , t � F

n. In words, d(ċ, ċ) is a true distance in the mathematical
sense (see Problem 1.2). �
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codes and ensembles 7

Definition 1.12 (Minimum Distance of a Code). Let C be a code. Its minimum
distance d(C) is defined as

�d(C) = min�d(u, v) � u, v � C , u � v� .

Let x � F
n and t � N. A sphere of radius t centered at the point x is the set of all

points inF
n that have distance atmost t from x. If, for a codeC ofminimumdistance

d, we place spheres of radius t = � d−12 � around each codeword, then these spheres
are disjoint. This follows from the triangle inequality: if u and v are codewords and
x is any element in F

n then d(C) � d(u, v) � d(u, x)+ d(v , x). If x is in the sphere
of radius t around u then this implies that d(v , x) � d(C) − d(u, x) � d+1

2 � t. In
words, x is not in the sphere of radius t around v. Further, by definition of d, t is the
largest such radius.

The radius t has an important operational meaning that explains why much of
classical coding is centered on the construction of codes with large minimum dis-
tance. To be concrete, consider the binary case. Assume we use a code C(n,M , d)
(i.e., a code with M codewords of length n and minimum distance d) for trans-
mission over a BSC and assume that we employ a bounded distance decoder with
decoding radius t, t � � d−12 �. More precisely, given y the decoder chooses x̂BD(y)
defined by

x̂BD(y) =
�������

x � C , if d(x , y) � t,
error, if no such x exists,

where by “error” the decoder declares that it is unable to decode. As we have just
discussed, there can be at most one x � C so that d(x , y) � t. Therefore, if the
weight of the error does not exceed t, then such a combination finds the correct
transmitted word. A large t hence implies a large resilience against channel errors.

How large can d (and hence t) be made in the binary case? Let δ = d�n denote
the normalized distance and consider for a fixed rate r, 0 < r < 1,

δ�(r) = lim sup
n��

max d(C)
n

� C � C !n, 2�nr�"# ,

where C �n, 2�nr�� denotes the set of all binary block codes of length n containing
at least 2�nr� codewords. Problem 1.15 discusses the asymptotic Gilbert-Varshamov
bound

h−12 (1 − r) � δ�(r),
where h2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function and
where for y � [0, 1], h−12 (y) is the unique element x � [0, 12] such that h2(x) = y.
Elias introduced the following upper bound,

δ�(r) � 2h−12 (1 − r)(1 − h−12 (1 − r)).(1.13)
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8 introduction

Both bounds are illustrated in Figure 1.14. We can now answer the question posed

0.2 0.4 0.6 0.80.0 r

0.1
0.2
0.3

δ(
r)

GV
Elias

Figure 1.14: Upper and lower bound on δ�(r).

at the end of the previous section. For a fixed channel BSC(є) pick a rate r such
that δ�(r) � 2є + ω, where ω is some arbitrarily small but strictly positive quan-
tity. We see from the Gilbert-Varshamov bound that such a strictly positive r and
ω exist if є < 1�4. By the definition of δ�, we can find a code of rate r of arbitrarily
large blocklength n which has a relative minimum distance at least δ = 2є + ω. By
Chebyshev’s inequality (see Lemma C.3 on page 480), for every positive probability
P bounded away from 1 there exists a positive constant c such that the number of
channel flips in a block of length n is at most nє + c

$
n with probability P. Assume

that we employ a bounded distance decoder. If we choose n sufficiently large so that
nє + c

$
n < δn�2 = nє + nω�2, then the bounded distance decoder succeeds with

probability at least P. Since P can be chosen arbitrarily close to 1 we see that there
exist codes that allow transmission at a positive rate with arbitrarily small positive
probability of error. The above procedure is by no means optimal and does not al-
low us to determine up to what rates reliable transmission is possible. We will see in
Section 1.6 how we can characterize the largest such rate.

Constructing provably good codes is difficult. A standard approach to show the
existence of good codes is the probabilistic method: an ensemble C of codes is “con-
structed” using some random process and one proves that good codes occur with
positive probability within this ensemble. Often the probability is close to 1 – almost
all codes are good. This approach, used already by Shannon in his 1948 landmark
paper, simplifies the code “construction” task enormously (at the cost of a less useful
result).

Definition 1.15 (Shannon’s Random Ensemble). Let the field F be fixed. Con-
sider the following ensemble C(n,M) of codes of length n and cardinalityM.There
are nM degrees of freedom in choosing a code, one degree of freedom for each
component of each codeword. The ensemble consists of all �F �nM possible codes
of length n and cardinality M. We endow this set with a uniform probability dis-
tribution. To sample from this ensemble proceed as follows. Pick the codewords
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map and ml decoding and app processing 9

x[1], . . . , x[M] randomly by letting each component x[m]i be an independently and
uniformly chosen element of F. �

We will see that such a code is likely to be “good” for many channels.

§1.5. MAP and ML Decoding and APP Processing
Assume we transmit over a channel with input F and output space Y using a code
C(n,M) = �x[1], . . . , x[M]	. Let the channel be specified by its transition probabil-
ity pY � X(y � x). The transmitter chooses the codeword X � C(n,M) with probabil-
ity pX(x). (In communications the idea is that the transmitter wants to transmit one
ofMmessages and uses one codeword for each possible message.)This codeword is
then transmitted over the channel. Let Y denote the observation at the output of the
channel. To what codeword should Y be decoded? If we decode Y to x̂(Y) � C , then
the probability that we have made an error is 1− pX �Y(x̂(Y) � y). Thus, to minimize
the probability of block error we should choose x̂(Y) to maximize pX �Y(x̂(Y) � y).
Themaximum a posteriori (MAP) decoding rule reads

x̂MAP(y) = argmaxx	C pX �Y(x � y)

= argmaxx	C pY � X(y � x)
pX(x)
pY(y)

by Bayes’s rule

= argmaxx	C pY � X(y � x)pX(x).

Ties can be broken in some arbitrary manner without affecting the error proba-
bility. As we indicated, this estimator minimizes the probability of (block) error
PB = P�x̂MAP(Y) � X�. If all codewords are equally likely, i.e., if pX is uniform,
then

x̂MAP(y) = argmaxx	C pY � X(y � x)pX(x) = argmaxx	C pY � X(y � x) = x̂ML(y),

where the right-hand side represents the decoding rule of the maximum likelihood
(ML) decoder. In words, for a uniform prior pX the MAP and the ML decoders are
equivalent.

The key step in the MAP decoding process is to compute the a posteriori prob-
ability (APP) pX �Y(x � y), i.e., the distribution of X given the observation Y . So we
call a MAP decoder also an APP decoder. Also, we will say that we perform APP
processing to mean that we compute the a posteriori probabilities.

§1.6. Channel Coding Theorem
We have already seen that transmission at a strictly positive rate and an arbitrarily
small positive probability of error is possible. What is the largest rate at which we
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10 introduction

can achieve a vanishing probability of error? Let us now investigate this question for
transmission over the BSC.

We are interested in the scenario depicted in Figure 1.16. For a given binary
code C(n,M) the transmitter chooses with uniform probability a codeword X �
C(n,M) and transmits this codeword over the channel BSC(є). The output of the
channel is denoted byY . At the receiver the decoder estimates the transmitted code-
word given the observation Y using the MAP rule x̂MAP(y). How small can we
make the incurred block error probability PMAP

B (C , є) = P�x̂MAP(Y) � X� for given
parameters n and M? Let P̂MAP

B (n,M , є) be the minimum of PMAP
B (C , є) over all

choices of C � C(n,M).

X � C(n,M)
uniform

X BSC(є) Y decoder

Figure 1.16: Transmission over the BSC(є).

Theorem 1.17 (Shannon’s Channel Coding Theorem). If 0 < r < 1− h2(є) then
P̂MAP
B (n, 2�rn�, є) n��%& 0.

Proof. Pick a code C from Shannon’s random ensemble C(n, 2�rn�) introduced in
Definition 1.15. Since the MAP decoder is hard to analyze we use the following sub-
optimal decoder. For some fixed ∆, ∆ � 0, define ρ = nє +

'
2nє(1 − є)�∆. If x[m]

is the only codeword such that d(y, x[m]) � ρ then decode y as x[m] – otherwise
declare an error.

For u, v � ��1�n let

f (u, v) =  0, if d(u, v) � ρ,
1, if d(u, v) � ρ,

and define
g[m](y) = 1 − f (x[m], y) + 

m′
m
f (x[m′], y).

Note that g[m](y) equals zero if x[m] is the only codeword such that d(y, x[m]) � ρ
and that it is at least one otherwise. Let P[m]B denote the conditional block error
probability assuming that X = x[m], i.e., P[m]B = P�x̂(Y) � X *X = x[m]	. We have

P[m]B (C , є) = 
y�g[m](y)�1

pY � X[m](y � x
[m]) � 

y	�1�n
pY � X[m](y � x

[m])g[m](y)

= 
y	�1�n

pY � X[m](y � x
[m])[1 − f (x[m], y)]
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