POWER EXHAUST IN FUSION PLASMAS

Nuclear fusion research is entering a new phase, in which power exhaust will play a vital role. This book presents a comprehensive and up-to-date summary of this emerging field of research in fusion plasmas, focusing on the leading tokamak concept.

Emphasis is placed on rigorous theoretical development, supplemented by numerical simulations, which are used to explain and quantify a range of experimental observations. The text offers a self-contained introduction to power exhaust, and deals in detail with both edge plasma turbulence and edge localized modes, providing the necessary background to understand these important, yet complicated phenomena.

Combining an in-depth overview with an instructive development of concepts, this is an invaluable resource for academic researchers and graduate students in plasma physics.

WOJCIECH FUNDAMENSKI is the leader of the Exhaust Physics Task Force at the Joint European Torus (JET), where he pursues research into edge plasma physics and particle/power exhaust. He is also a Visiting Lecturer in Plasma Physics at Imperial College, London, and a committee member of the Plasma Physics Group of the Institute of Physics.

Cambridge University Press 978-0-521-85171-8 - Power Exhaust in Fusion Plasmas Wojciech Fundamenski Frontmatter More information

POWER EXHAUST IN FUSION PLASMAS

WOJCIECH FUNDAMENSKI

Culham Science Centre

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521851718

© W. Fundamenski 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-85171-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-85171-8 - Power Exhaust in Fusion Plasmas Wojciech Fundamenski Frontmatter More information

dla Oli

Contents

Preface							
1	Introduction						
	1.1	1.1 Fusion reactor operating criteria					
	1.2	6					
	1.3	Power	8				
	1.4	Chapt	11				
	1.5	Units	14				
	1.6	5 Further reading					
2	Mag	gnetize	d plasma physics	16			
	2.1	2.1 What is a plasma?					
		2.1.1	Plasma parameter	17			
		2.1.2	Magnetization parameter	18			
	2.2	Charg	ed particle motion	19			
		2.2.1	Guiding centre drifts	20			
		2.2.2	Canonical (angle-action) variables	27			
	2.3 Kinetic description			33			
		2.3.1	Phase space conservation laws	34			
		2.3.2	Guiding centre kinetic theory	36			
	2.4 Fluid description		44				
		2.4.1	Co-ordinate space conservation laws	45			
		2.4.2	Guiding centre fluid theory	50			
	2.5 The relation between MHD- and drift-ordered dynamics		72				
	2.6	Furthe	er reading	73			
3	Mag	gnetize	d plasma equilibrium	74			
	3.1	Magn	etic geometry and flux co-ordinates	75			
	3.2 Plasma current in MHD equilibrium						
		3.2.1	Hamada co-ordinates	86			
		3.2.2	Symmetry co-ordinates	88			

viii		Contents		
	3.3	Large	aspect ratio, toroidal equilibrium	92
		-	General screw pinch	92
			Cylindrical tokamak	95
			Large aspect ratio (small ϵ) tokamak	95
	3.4	Furthe	er reading	100
4	Mag	gnetize	d plasma stability	101
	4.1	Hydro	odynamic waves and instabilities	101
	4.2	MHD	waves and instabilities	107
		4.2.1	Ideal MHD waves in a uniform plasma	107
		4.2.2	MHD waves and instabilities in a stratified plasma	109
		4.2.3	Ideal MHD waves and instabilities in a confined plasma	109
		4.2.4	Ideal MHD waves and instabilities in a general screw pinch	115
		4.2.5	Flute-reduced MHD	117
		4.2.6	Non-homogeneous shear Alfvén waves	122
		4.2.7	Current-driven ideal MHD instabilities: kink modes	123
		4.2.8	Pressure-driven ideal MHD instabilities: ballooning modes	127
			Resistive MHD instabilities: tearing modes	142
	4.3		waves and instabilities	151
	4.4	Kineti	ic waves and instabilities	157
	4.5		er reading	161
5			transport in magnetized plasmas	162
	5.1		ional transport in a neutral gas	163
			Maxwell–Boltzmann collision operator	163
			Chapman–Enskog expansion	166
			Fokker–Planck collision operator	170
	5.2	-	ed particle collisions in a plasma	172
			Coulomb collision operator	172
			Test particle dynamics in a plasma	178
			Collisional momentum exchange	179
			Collisional energy (heat) exchange	182
	5.3		ional transport in a plasma	184
		5.3.1	Collisional transport in an unmagnetized plasma	184
			Collisional transport in a cylindrical plasma	188
		5.3.3	Collisional transport in a toroidal plasma	200
	5.4		er reading	219
6			transport in magnetized plasmas	220
	6.1		odynamic turbulence	220
		6.1.1	5 5	222
			HD turbulence in 3D	224
		6.1.3	HD turbulence in 2D	239

		Contents	ix			
	6.2	MHD turbulence				
		6.2.1 MHD turbulence in 3D	245			
		6.2.2 MHD turbulence in 2D	251			
	6.3	DHD turbulence	252			
		6.3.1 Drift-fluid turbulence	253			
		6.3.2 Gyro-fluid turbulence	275			
		6.3.3 Drift-kinetic and gyro-kinetic turbulence	280			
	6.4	Comparison of collisional and turbulent diffusivities	283			
	6.5	Further reading	285			
7	Tok	amak plasma boundary and power exhaust	286			
	7.1	The scrape-off layer (SOL)	287			
		7.1.1 Plasma–surface interactions	287			
		7.1.2 Plasma–neutral interactions	295			
		7.1.3 SOL geometry: limiter, divertor and ergodic SOL	300			
		7.1.4 SOL equilibrium, stability and transport	307			
		7.1.5 SOL modelling approaches	318			
	7.2		322			
		7.2.1 Experimental observations	323			
		7.2.2 Numerical simulations	328			
	7.3		353			
		7.3.1 Edge transport barrier	353			
		7.3.2 Power exhaust in between ELMs	367			
		7.3.3 Power exhaust during ELMs	376			
		7.3.4 Power exhaust control techniques	388			
	7.4	8	394			
8		look: power exhaust in fusion reactors	395			
	8.1	ITER	395			
	8.2	DEMO	401			
	8.3	PROTO and beyond	403			
	8.4	6	404 405			
-	Appendix A Maxwellian distribution					
-	Appendix B Curvilinear co-ordinates					
	References					
In	Index					

© in this web service Cambridge University Press

Cambridge University Press 978-0-521-85171-8 - Power Exhaust in Fusion Plasmas Wojciech Fundamenski Frontmatter <u>More information</u>

Preface

Power exhaust, by which we mean the safe removal of power from a burning plasma, is an essential requirement for the successful operation of any fusion reactor. Specifically, plasma thermal energy must be conveyed across the first wall without undue damage to plasma facing components (divertor and limiter tiles) by heat load related plasma–surface interactions (ablation, melting, erosion). Unlike other 'technological' problems related to fusion reactor design, e.g. tritium retention in plasma facing materials, neutron damage to structural components or non-inductive current drive, power exhaust is intimately linked to plasma confinement and thus a perennial concern for any fusion reactor. While only a minor issue in existing tokamaks, it will be critical for ITER (the next step plasma-burning experiment) and even more so for DEMO (the demonstration fusion power plant). Even non-burning, superconducting machines, such as EAST, KSTAR, JT60-SA, W7-X, etc. will be forced to tackle this problem due to their long pulse capabilities.

This monograph is an attempt to draw a unified and up-to-date picture of power exhaust in fusion plasmas, focusing primarily on the leading tokamak concept. Emphasis is placed on rigorous theoretical development, supplemented by numerical simulations when appropriate, which are then employed to explain and model a range of experimental observations. The objective is not just to provide the reader with a reliable map of the conquered territory and a guided tour over its many hills and valleys,¹ but also to supply him or her with the tools necessary to embark on independent, and hopefully fruitful, journeys into the uncharted regions, the white spaces on the map, *la terra incognita*. In this respect, the book is aimed both at graduate students of magnetically confined plasmas and at researchers already working in the field wishing to develop a deeper understanding of plasma exhaust physics – a quickly emerging area of fusion research.

¹ This function being well served by regular review articles appearing in topical journals.

Cambridge University Press 978-0-521-85171-8 - Power Exhaust in Fusion Plasmas Wojciech Fundamenski Frontmatter More information

xii

Preface

Broadly speaking, the text is organized into two parts. The first (Chapters 2 to 4) is dedicated to developing the theoretical framework necessary to describe the equilibrium and stability properties of magnetically confined plasmas, the second (Chapters 5 to 8) deals with plasma transport phenomena necessary to understand power exhaust in real experiments. After a brief examination of charged particle motion, the two basic orderings of plasma dynamics (MHD and drift) are introduced and the corresponding guiding centre kinetic and fluid equations are derived. These are then used to investigate the equilibrium, stability and transport properties of magnetically confined plasmas. Energy transport in the radial, diamagnetic and parallel directions due to collisional (classical and neoclassical) and turbulent (drift-Alfvén and interchange) processes is examined with special emphasis on plasma turbulence in the boundary (edge) plasma and the scrape-off layer (SOL). Next, the relevant experimental results from tokamaks and the modelling approaches typically used to interpret these results are reviewed. Finally, the tools developed hereto are applied collectively to study power exhaust in low and high confinement regime plasmas in tokamaks, in particular to edge/SOL turbulence and edge localized modes (ELMs).

The idea for this book originates with my early inroads into power exhaust on JET and owes much to the difficulties I encountered in finding relevant material in the topical literature. During this period I was, and indeed still am, fortunate enough to benefit from the vibrant scientific environment of the Culham Science Centre. I thus feel highly indebted to my many colleagues and friends at JET and in other labs around the world, without whom this project would certainly not have succeeded. In particular, I would like to thank A. Alonso, P. Andrew, N. Asakura, M. Beurskens, J. Boedo, S. Brezinsek, D. Campbell, C. S. Chang, A. Chankin, J. Connor, G. Corrigan, D. Coster, G. Counsell, T. Eich, S. K. Erents, M. Fenstermacher, O. E. Garcia, B. Gonçalves, P. Helander, T. Hender, C. Hidalgo, G. Huysmann, S. Jachmich, A. Kirk, S. Krashenninikov, A. Kukushkin, B. LaBombard, B. Lipschultz, S. Lisgo, A. Loarte, G. F. Matthews, G. McCracken, W. Morris, D. Moulton, V. Naulin, A. Nielsen, V. Philipps, R. A. Pitts, J. Rapp, R. Schneider, B. Scott, S. Sipilä, P.C. Stangeby, M. Tokar, D. Tskhakaya, S. Wiesen, M. Wischmeyer, G.S. Xu, R. Zagórski and S. Zweben. I would also like to thank UKAEA, EFDA-JET, EPSRC and Imperial College, London, for their support and the many research opportunities which they supplied.