Biology and Pathology of Trophoblast

This is the first dedicated, in-depth account of trophoblast: the tissue derived from the fertilised egg that nourishes and protects the developing fetus. The cells of the trophoblast have many unique qualities, and exhibit great variability across different species. It has a fascinating role in the development of the placenta and as a regulator during early growth of the embryo. These aspects are all fully covered as well as studies on why it is not rejected by the mother as 'foreign' tissue. Disorders of trophoblast during development also manifest themselves in several clinical conditions during pregnancy, including gestational trophoblastic disease and pre-eclampsia. From stem cells through to epigenetics, implantation and X-chromosome inactivation, there is still a lot to be learned about trophoblast: this volume provides an up-to-date summary of the state of current knowledge and offers some glimpses as to future development on the scientific and clinical front.
Biology and Pathology of Trophoblast

Edited by
Ashley Moffett
Charlie Loke
Anne McLaren
Contents

List of contributors
List of participants
Preface
Y. W. (Charlie) Loke

Chair’s introduction

Anne McLaren

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trophoblast cell fate specification</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James Cross</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Stem cells: pluripotency and extraembryonic differentiation in the mouse</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tilo Kunath</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Epigenetic regulation of trophoblast development</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. Hajkova, S. E. Erhardt and M. A. Surani</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Regulation of X-chromosome inactivation in relation to lineage allocation in early mouse embryogenesis</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neil Brockdorff</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General discussion I</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>Gestational trophoblastic disease</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. A. Fisher and N. J. Sebire</td>
<td></td>
</tr>
</tbody>
</table>
Contents

1. **Trophoblast and the first trimester environment**
 Discussion
 Graham J. Burton and Eric Jauniaux
 111

2. **Implantation is a sticky situation**
 Discussion
 Olga Genbacev, Akraporn Prakobphol, Russell A. Foulk and Susan J. Fisher
 132

3. **Trophoblast regulation of maternal endocrine function and behaviour**
 Discussion
 E. B. Keverne
 148

4. **General discussion II**
 169

5. **Molecular signalling in embryo–uterine interactions during implantation**
 Discussion
 S. K. Dey and Susanne Tranguch
 173

6. **Trophoblast and pre-eclampsia**
 Discussion
 C. W. G. Redman, I. L. Sargent and E. A. Linton
 194

7. **Trophoblast and uterine mucosal leukocytes**
 Discussion
 Ashley Moffett
 223

8. **Immunology of trophoblast: a reappraisal**
 Discussion
 Y. W. (Charlie) Loke
 242

9. **Final general discussion**
 261

10. **Index**
 267
Contributors

Neil Brockdorff
MRC Clinical Sciences Centre, ICSM, Hammersmith Hospital, DuCane Road, London W12 0NN, UK

Graham Burton
University of Cambridge, Department of Anatomy, Downing Street, Cambridge CB2 3DY, UK

James Cross
University of Calgary, Department of Biochemistry and Molecular Biology, Faculty of Medicine, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada

S. K. Dey
Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-2678, USA

S. E. Erhardt
LBNL, 1 Cycotron Road, MS 84-171, Berkeley CA 94720, USA

Rosemary Fisher
Imperial College London, Faculty of Medicine, Department of Cancer Medicine, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK

Susan Fisher
UCSF, Biomedical Sciences Program, Box 0512, San Francisco, CA 94143-0512, USA

Russell Foulk
The Nevada Center for Reproductive Medicine, 6630 S. McCarran Blvd, Reno, NV 89509, USA

Olga Genbacev
Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512, USA

Petra Hajkova
Wellcome Trust/Cancer Research UK, Gurdon Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QR, UK

Eric Jauniaux
Academic Department of Obstetrics and Gynaecology, Royal Free and University College London, UK

Barry Keverne
University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
List of contributors

Tilo Kunath
Institute for Stem Cell Research, University of Edinburgh, Roger Land Building, King’s Buildings, West Mains Road, Edinburgh EH9 3JQ, UK

E. A. Linton
Department of Obstetrics & Gynaecology, Nuffield Department, John Radcliffe Hospital, Oxford, OX3 9DU, UK

Y. W. Loke
Kings College, University of Cambridge, Cambridge CB2 1ST, UK

Anne McLaren
(Chair) Wellcome Trust Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QR, UK

Ashley Moffett
Research Group in Human Reproductive Immunobiology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK

Akraporn Prakobphol
Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0512

Chris Redman
Department of Obstetrics & Gynaecology, Nuffield Department, John Radcliffe Hospital, Oxford, OX3 9DU, UK

I. L. Sargent
Department of Obstetrics & Gynaecology, Nuffield Department, John Radcliffe Hospital, Oxford, OX3 9DU, UK

N. J. Sebire
Department of Histopathology, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK

Azim Surani
Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QR, UK

Susanne Tranguch
Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-2678, USA
Participants

Peter Braude
10th floor, North Wing, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK

Neil Brockdorff
MRC Clinical Sciences Centre, ICSM, Hammersmith Hospital, DuCane Road, London W12 0NN, UK

Graham Burton
University of Cambridge, Department of Anatomy, Downing Street, Cambridge CB2 3DY, UK

James Cross
University of Calgary, Department of Biochemistry and Molecular Biology, Faculty of Medicine, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada

S. K. Dey
Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-2678, USA

Danielle Evain-Brion
Inserm U427, Faculty des Sciences Pharmaceutiques et Biologiques, Universite Rene-Descartes, Paris V, 4 Avenue de l’Observatoire, 75006 Paris, France

Anne Ferguson-Smith
University of Cambridge, Department of Anatomy, Downing Street, Cambridge CB2 3DY, UK

Rosemary Fisher
Imperial College London, Faculty of Medicine, Department of Cancer Medicine, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK

Susan Fisher
UCSF, Biomedical Sciences Program, Box 0512, San Francisco, CA 94143-0512, USA

Abby Fowden
University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK

Petra Hajkova
Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QR, UK

Myriam Hemberger
The Babraham Institute, Babraham Hall, Babraham, Cambridge CB2 4AT, UK

P. Jacobs
Department of Human Genetics, Salisbury District Hospital, Salisbury, Wilts SP2 8BJ, UK
List of participants

Barry Keverne
University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK

Tilo Kunath
Institute for Stem Cell Research, University of Edinburgh, Roger Land Building, King's Buildings, West Mains Road, Edinburgh EH9 3JQ, UK

Andrew Lever
Level 5, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK

Y. W. Loke
Kings College, University of Cambridge, Cambridge CB2 1ST, UK

Anne McLaren
(Chair) Wellcome Trust Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QR, UK

Ashley Moffett
Research Group in Human Reproductive Immunobiology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK

Robert Pijnenborg
Universitaire Ziekenhuizen Leuven, Obstetrics-Gynaecology, UZ Gasthuisberg, Herestraat 49, B3000 Leuven, Belgium

Chris Redman
Department of Obstetrics & Gynaecology, Nuffield Department, John Radcliffe Hospital, Oxford OX3 9DU, UK

Wolf Reik
The Babraham Institute, Babraham, Cambridge CB2 4AT, UK

Marilyn Renfree
Department of Zoology, University of Melbourne, Victoria, Australia

Andrew Sharkey
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK

Colin Sibley
The Medical School, University of Manchester, St Mary's Hospital, Manchester M13 0JH, UK

Azim Surani
Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QR, UK

John Trowsdale
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
A major step in the evolution of eutherian mammals was the formation of the trophoblast, a specialised layer of cells derived early in embryogenesis. From this separate compartment, trophoblast is able to organise its own programme of development within a well-defined time span that is independent of the embryo, thereby enabling it to fulfil unique functions during ontogeny. While trophoblast contributes to the formation of the placenta in all eutherians, the manner by which it does so varies significantly among species (Carter 2001). It is important to recognise the pattern and extent of these variations if dialogue between investigators using human and those using animal material is to be meaningful. The trophoblast cell itself occurs in different forms ranging from uninuclear to multinuclear varieties, the latter appearing either as large giant cells or as a syncytium. Some of the giant cells are polytenic whilst others are polyploid but it is not known why these occur in different locations and time points of gestation in different species.

Trophoblast cells have remarkable growth and invasive properties in vivo, so much so that they resemble neoplastic cells, yet the in vitro culture and propagation of human trophoblast cells have still not met with much success. The recent realisation that some ‘trophoblast’ cell lines presently available are not what they seem to be has raised questions about how these cells should be characterised (King et al. 2000). Murine trophoblast stem cells have been identified, but in humans they have been elusive and the search continues.

Targeted mutation studies in mice have identified many genes involved in trophoblast development, some of which are specific to trophoblast, such as Mash2, a member of the basic helix-loop-helix gene family, while others also have roles in other cell lineages. It is becoming increasingly clear that different phases of trophoblast development are controlled by different regulatory genes (Rossant & Cross 2001). Interestingly, Mash2 and the human equivalent HASH2 show imprinting. Indeed, a significant number of imprinted genes so far identified are expressed in trophoblast (John & Surani 2000). The pattern of imprinting in trophoblast can differ from that in somatic tissues. An example of this is the selective inactivation of
the paternal X chromosome in trophoblast, while this process is random in somatic tissues. In marsupials, the paternal X chromosome is inactivated in all tissues so it appears that, with the evolution of eutherians, this selective process is retained only in extraembryonic tissues. Transcription and translation of endogenous retroviral genes have also been frequently observed in trophoblast (Taruscio & Mantovani 1998). What role these extraneous gene sequences might play in trophoblast development is not clear but the ability of one such retroviral protein (syncytin) to cause cell fusion and syncytialisation raises the intriguing possibility that they could contribute to trophoblast differentiation.

The term ‘trophoblast’ (Greek for nutrition) was introduced by Hubrecht (1889), who viewed it as a layer that serves to nourish the embryo. While this histiotrophic role is indeed important, there are many others, still poorly understood, that are equally critical for development. In spite of its physical separation early in ontogeny, trophoblast remains an important source of signalling molecules involved in embryonic patterning. Trophoblast also has influence on the mother. Its products regulate both the prenatal behaviour of the female (increased feeding, inhibition of sexual behaviour) and the production of milk by the mammary glands; it also primes the female’s brain to ensure a prompt onset of maternal behaviour and milk let-down postnatally (Keverne 2001). Hence, its position at the interface between the fetus and its mother makes trophoblast a vital link in the pathway for maternal communication, with influence directed simultaneously at two genetically distinct individuals. The placenta separates the fetus and mother, so trophoblast must also hold the key to the immunological paradox of pregnancy, an enigma which has remained unexplained ever since the elucidation half a century ago, that transplant rejection is caused by genetic differences of polymorphic major histocompatibility complex (MHC) molecules between graft and recipient. In humans, trophoblast expresses a unique combination of MHC molecules and receptors for these paternally derived MHC molecules are expressed by a distinctive population of uterine leukocytes (natural killer cells) (Loke & King 2001). This provides a molecular mechanism for maternal recognition of the allogeneic trophoblast. In addition, the physiological transport of important molecules, such as antibodies, from mother to fetus is a selective receptor-mediated process by trophoblast. Thus, it is not surprising that trophoblast should have a range of functions far more varied than other tissues of the developing embryo.

The study of trophoblast, therefore, transcends disciplinary boundaries. Investigators interested in one aspect of trophoblast would greatly benefit from knowledge gained from research in areas other than their own. This became apparent recently when several of us at King’s College, Cambridge discovered that although we have an overlapping interest in trophoblast, we are ignorant about the work being done by the others and would like to learn more from each other. For this reason, we have
Preface

gathered together scientists and clinicians from diverse disciplines to share their expertise in an intimate workshop environment characteristic of a Novartis Foundation Symposium. The presented papers and discussions are now published by Cambridge University Press and should serve as a valuable, comprehensive source of information for the future.

REFERENCES

