COMMUNICATION IN MECHANISM DESIGN

Mechanism design is the field of economics that treats institutions and procedures as variables that can be selected in order to achieve desired objectives. An important aspect of a mechanism is the communication among its participants that it requires, which complements other design features such as incentives and complexity. A calculus-based theory of communication in mechanisms is developed in this book. The value of a calculus-based approach lies in its familiarity as well as the insight into mechanisms that it provides. Results are developed concerning (i) a first-order approach to the construction of mechanisms, (ii) the range of mechanisms that can be used to achieve a given objective, as well as (iii) lower bounds on the required communication.

Steven R. Williams is Professor of Economics at the University of Illinois in Urbana-Champaign, where he has also served as head of the economics department. He earned a B.A. from Kenyon College in 1976 and M.S. and Ph.D. degrees from Northwestern University in the field of mathematics in 1977 and 1982, respectively. After postdoctoral appointments at the Institute for Mathematics and Its Applications at the University of Minnesota and at Bell Laboratories, he served as a faculty member at Northwestern University before moving to the University of Illinois. Professor Williams has published articles in the top journals in his field of microeconomic theory, including *Econometrica*, the *Review of Economic Studies*, and the *Journal of Economic Theory*.

Communication in Mechanism Design

A Differential Approach

STEVEN R. WILLIAMS

University of Illinois, Urbana-Champaign

Cambridge University Press	
978-0-521-85131-2 - Communication in Mechanism Design: A Different	ial Approach
Steven R. Williams	
Frontmatter	
More information	

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

> Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521851312

© Steven R. Williams 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Williams, Steven R., 1954– Communication in mechanism design : a differential approach / Steven R. Williams. p. cm. Includes bibliographical references and index. ISBN 978-0-521-85131-2 (hbk.) 1. Econometric models. 2. Information theory in economics. 3. Mathematical economics. I. Title. HB141.W557 2008 330.01′5195–dc22 2007051003

ISBN 978-0-521-85131-2 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To Christine

Cambridge University Press	
978-0-521-85131-2 - Communication in Mechanism Design: A Diffe	erential Approach
Steven R. Williams	
Frontmatter	
More information	

Contents

Prej	face		<i>page</i> xi	
Ack	nowl	edgment	xiii	
	T /	1	1	
1	Inti	ntroduction		
	1.1	1.1 The Model of a Mechanism		
		1.1.1 Example: The Competitive Mechanism	6	
		1.1.2 Example: Mechanisms and Noncooperative Solution		
		Concepts	8	
	1.2	Encoding and Product Structure	13	
		1.2.1 Product Structure and Noncooperative Solution		
		Concepts	16	
		1.2.2 Example: The Efficient Level of a Public Good	18	
	1.3	A Theme in Differential Equations	24	
		1.3.1 Example: Does a Given Mapping Represent Inverse		
		Demand?	25	
	1.4	Investigating Mechanisms Using Calculus		
		1.4.1 Example: Selecting the Efficient Level of a Public Good		
		for Restricted Valuation Functions	30	
	1.5	Overview of Text	34	
2 Classical Conc 2.1 Distributi		ssical Concepts and Results	35	
		Distribution, Foliation, and Mapping	35	
		2.1.1 Example: A Discontinuous Distribution \mathcal{D} for Which		
		the Equivalence in Figure 1.4 Holds	37	
	2.2	Integrability	38	
		2.2.1 Example: Integrability and the Equality of Mixed Partials	40	

Cambridge University Press	
978-0-521-85131-2 - Communication in Mecha	anism Design: A Differential Approach
Steven R. Williams	
Frontmatter	
Moreinformation	

viii		Contents	
	2.2		12
	2.3	A Geometric Interpretation of Integrability	42
	2.4	2.3.1 Example: Integrable and Nonintegrable Distributions	45
	2.4	The Proof of the Frederius Theorem	48
	2.5	2.5.1. The Green of and down and down	52
		2.5.1 The Case of $c = 1$ and $a = 2$	52 54
	26	2.5.2 The General Case	54
	2.0	2.6.1 Example: The Nenevistance Clobally of the Menning	57
		2.0.1 Example. The Nonexistence Globally of the Mapping	50
		$u_{(c)}$	59 61
		2.6.3 Example: A Maximal Integral Manifold Need Not Be a	01
		2.0.5 Example: A Maximal Integral Manifold Need Not De a	63
	27	A Global Construction of <i>Mapping</i>	65
	2.,	2.7.1 Example: Consumer Demand	66
		2.7.7 Example: A Transverse Plane May Not Exist Globally	69
		2.7.2 Example II Italisterice Faile Flag, For Exist Grobally	0,7
3	Application to Mechanisms		74
	3.1	Two Examples	74
		3.1.1 Example: Cournot Duopoly with Quadratic Cost	75
		3.1.2 Example: Exchange Economy with Quadratic Utility	80
	3.2	Direct Sum, Product Structure, and Message Process	85
		3.2.1 The Duality between Integrability Condition (ii) of	
		Direct Sum and Partitioning Condition (iii) of	
		Product Structure	86
		3.2.2 Example: Nonintegrability of the Direct Sum \mathcal{D} and the	
		Failure of the Product Sets to Partition Θ	89
	3.3 Message Process \Rightarrow Product Structure \Rightarrow Direct Sum		90
	3.4	A Modified Frobenius Theorem	92
		3.4.1 Direct Sum \Rightarrow Message Process Locally	96
	3.5	Proof of the Theorem for Mechanism Design	99
		3.5.1 Example: $n = 2$ and $c_1 = d_1 = c_2 = d_2 = 1$	101
		3.5.2 The General Case	105
	3.6	Global Product Structure	108
		3.6.1 Example: Defining a Message Process Using Partitions	109
		3.6.2 A Test for <i>Product Structure</i>	111
		3.6.3 <i>Global Product Structure</i> in the Case of $n = 2$	113
		3.6.4 <i>Global Product Structure</i> for Arbitrary <i>n</i>	117
	3.7	Differential Ideal	119
		3.7.1 Example: Properties (iii) of <i>Differential Ideal</i> and of	
		Product Structure	121

CAMBRIDGE

Cambridge University Press	
978-0-521-85131-2 - Communication in Mechanism	n Design: A Differential Approach
Steven R. Williams	
Frontmatter	
Moreinformation	

			Contents	ix
4	Realizing a C^{∞} Mapping			125
	4.1	1 Necessary and Sufficient Conditions		
		4.1.1	Equations for Realization on the Objective F	130
		4.1.2	Necessary and Sufficient Conditions Using	
			Differential Ideal	132
		4.1.3	The Multiplicity of Mechanisms	133
	4.2	A Lov	wer Bound on Message Space Dimension	136
		4.2.1	Example: Existence of a Mechanism of Profile (1, 1)	
			That Realizes f in the Case of $n = 2$ and	
			$\dim \Theta_1 = \dim \Theta_2 = 2$	137
		4.2.2	Chen's Bound on Minimal Message Space Dimension	140
	4.3	Exam	ple: Realizing an Implicitly Defined Function	142
		4.3.1	A Special Case of (4.37): Realizing a Walrasian	
			Allocation	145
		4.3.2	Realizing a Non-Walrasian Pareto Optimal Allocation	146
		4.3.3	Discussion	148
	4.4	Gene	ricity	150
		4.4.1	The Proof of the Genericity Result	151
		4.4.2	The Information Collected in Realizing a Generic F	154
	4.5 Example: Realizing a Walrasian Allocation		156	
	4.6 Example: Prices in Terms of Endowments		159	
	4.6.1 The Competitive Mechanism with Net Trades as			
			Messages	162
		4.6.2	Product Structure, Direct Sum, and Differential Ideal	
			in Realizing Walrasian Prices	164
		4.6.3	k = 2 Goods and <i>n</i> Agents	168
		4.6.4	The Case of Cobb–Douglas Utility	170
		4.6.5	k = 3 Goods and $n = 2$ Agents	171
		4.6.6	The General Case	173
	4.7	Exam	pple: Team Decision Problems	175
	4.8	Exam	pple: Implementation in Privacy Preserving Strategies	179
	4.9	Gene	ricity and the Theory of Organizations	185
Bibi	liogra	phy		191
Inde	ex			195

Preface

This text develops a calculus-based, first-order approach to the construction of economic mechanisms. A mechanism here is informationally decentralized in the sense that it operates in an environment in which relevant information is dispersed among the participating agents. A mechanism thus requires a "language," or message space, that defines how the agents may communicate with one another. This text focuses on the task of constructing the alternative message spaces that a group of agents may use as languages for communicating with one another and thereby achieve a common objective. The relationship between the language that a group of agents may use and the ends that they may accomplish was identified in Hurwicz (1960); the model of a mechanism that is the main object of study in this text originated in this paper and in the long-term collaboration of Leonid Hurwicz with Stanley Reiter. Whereas constructing the message space is but one aspect of the design of a mechanism, it is fundamental in the sense that other aspects (such as dynamic stability and incentives) revolve around the choice of messages with which agents may communicate.

It is assumed here that the sets in the model of a mechanism are subsets of Euclidean space. Appropriate regularity assumptions are imposed on mappings and correspondences so that it is possible to identify necessary and sufficient differential conditions for the design of an economic mechanism. The technique of assuming that all sets in a model are Euclidean and all mappings and correspondences are differentiable is a standard method for making progress and gaining intuition into a scientific problem. Progress is facilitated because the techniques and concepts of a rich field of mathematics in this way become applicable to the problem. Intuition is gained because calculus is nearly universal in science. Although such a continuum model may not capture all aspects of the problem that may be of interest, and though it may in some cases seem to inadequately fit a particular instance

xii

Preface

of the problem, the successful development of a calculus-based approach is in general a significant step forward in the theoretical study of a problem.

This text complements Hurwicz and Reiter (2006), which develops a set theoretic approach to the construction of mechanisms. Because of the regularity assumptions imposed here, this text elaborates a branch of the theory of mechanism construction, with the set theoretic approach serving as the trunk. Insight and results are produced using the calculus approach; however, that may not be derived purely with set theory. It is worth noting that the calculus approach preceded and inspired much of the set theoretic approach of Hurwicz and Reiter (2006).

The target audience of this text is anyone interested in the field of economic theory known as mechanism design. Because some methods and concepts of differential geometry are not widely known among economic theorists, the second chapter presents the relevant mathematical theory in a style that is intended to be accessible to this community. The difficulty of a journey through differential geometry has deterred most economic theorists from learning about this approach to mechanism design; the second chapter thus provides a shortcut directly to the needed material. The third chapter then develops the first-order approach to the construction of an economic mechanism in a manner that parallels the mathematical theory of Chapter 2. This theory is then applied in the fourth chapter to explore the relationship between the ends that a group of agents can accomplish and the languages that they may use for communicating among themselves.

Acknowledgment

I was introduced to this topic when I was a graduate student at Northwestern University, working under the supervision of Donald Saari. In the summer of 1979, I was hired to proofread Hurwicz et al. (1978), which remains an incomplete manuscript that is full of promising ideas. The main purpose of this text is to assist in the completion of the research program that is outlined in Hurwicz and colleagues' manuscript. Over the years 1979-1982, Leonid Hurwicz and I discussed several results and proofs in the manuscript by phone, by mail, and with an occasional visit. As part of our dialogue and with Leo's encouragement, I wrote proofs of several results. The relevance of the Frobenius Theorem to the objective of developing a calculus-based approach to mechanism design had been identified in Hurwicz et al. (1978). I formulated and proved a version of the Frobenius Theorem (Theorem 6 in Chapter 3) that addresses aspects of the model of a mechanism. This theorem has proven useful in formalizing the Hurwicz, Reiter, and Saari research program. I profited from numerous conversations with Donald Saari while working on these results, and I also benefited from discussions with Stanley Reiter and Kenneth Mount concerning the broader research program. I therefore acknowledge the many contributions of Leo, Ken, Stan, and Don to this text.

A difference between my approach in this text and the approach of Hurwicz et al. (1978) is that I develop the theory of message processes as a separate topic from the theory of the relationship between an objective and a mechanism that realizes it. A message process is the component of a mechanism that captures the communication among the agents. Chapter 3 develops the calculus of message processes, and Chapter 4 applies this methodology to the relationship between objectives and mechanisms. Most of the results of Chapter 3 on message processes would only be complicated by including the objective to be realized; I thus separate the calculus of

xiv

Acknowledgment

message processes from the topic of realization of objectives for the sake of clarity. I mention this point at the beginning of this text to avoid confusing the reader who compares results of Chapter 3 of this text with cited results of Hurwicz et al. (1978), which mostly concern aspects of a mechanism that realize a given objective.

There is an alternative to the analytical approach followed in this text that is more algebraic in flavor. This approach formalizes the first-order conditions for the design of a mechanism using the theory of differential ideals. It was first presented in Part IV of Hurwicz et al. (1978). It has been extensively developed in a series of papers by Saari,¹ and so it is discussed in this text only in Section 3.7 and Subsections 4.1.2, 4.6.5, and 4.6.6. The differential ideal approach is mathematically equivalent to the approach described in this text; all results obtainable with one approach can be obtained with the other. The differential ideal approach is an alternative way of formulating and expressing ideas, however, which can provide intuition and facilitate proofs. Much of mathematics involves finding the right way to formally express complex ideas in order to facilitate further proof and understanding. This is especially true in the field of differential geometry, which underlies the first-order approach to the construction of mechanisms. This text therefore complements and does not perfectly substitute for the differential ideal approach to the construction of mechanisms.

Many of the results in this field of research have been presented at the Decentralization Conference, which is supported by the National Science Foundation. Attending this conference has greatly enhanced my understanding of the topic of decentralization and the field of mechanism design. I thank the many organizers and attendees of this conference over the more than twenty years that I have attended, especially Roy Radner, Ted Groves, and Matt Jackson, who managed the conference during this period. Among the attendees, I have particularly benefited from my conversations with Jim Jordan, John Ledyard, and Stefan Reichelstein. I also thank Tom Marschak for his encouragement and support of this project. The broad research program of which this text represents just one thread was furthered by a year of emphasis in 1983–1984 at the Institute for Mathematics and Its Applications at the University of Minnesota. This institute is also supported by the National Science Foundation.

I acknowledge my debt to Michael Spivak's excellent texts, A Comprehensive Introduction to Differential Geometry, vol. I (1979) and Calculus on

¹ Saari (1995) is perhaps the most accessible source on this approach (1984, 1985, 1988, 1990).

Cambridge University Press	
978-0-521-85131-2 - Communication in Mechanism Design: A Differential Appr	oach
Steven R. Williams	
Frontmatter	
More information	

Acknowledgment

XV

Manifolds (1965), from which most of the material in Chapter 2 is drawn. My debt goes beyond the results and the arguments from these texts that I have cited here: I learned most of what I know about the mathematics that I use here from reading these texts, and Spivak's distinctive style and geometric perspective have greatly influenced my presentation of this material. I encourage readers who wish to delve more deeply into the mathematics presented here to consult these texts.

Finally, I thank Naoko Miki for her assistance in preparing this manuscript for publication.