FLUID DYNAMICS WITH A COMPUTATIONAL PERSPECTIVE

Modern fluid dynamics is a combination of traditional methods of theory and analysis and newer methods of computation and numerical simulation. Underlying both are the principles of fluid flow. *Fluid Dynamics with a Computational Perspective* synthesizes traditional theory and modern computation. It is neither a book on methods of computation, nor a book on analysis; it is about fluid dynamics – consistent with the state of the art in that field. The book is ideal for a course on fluid dynamics. The early chapters review the laws of fluid mechanics and survey computational methodology and the subsequent chapters study flows where the Reynolds number increases from creeping flow to turbulence, followed by a thorough discussion of compressible flow and interfaces. Although all significant equations and their solutions are presented, their derivations are informal. References for detailed derivations are provided. A chapter on intermediate Reynolds number flows provides illustrative case studies by pure computation. Elsewhere, computations and theory are interwoven.

Paul A. Durbin is the Martin C. Jischke professor of aerospace engineering at Iowa State University. He was previously a professor in mechanical engineering at Stanford University. His research interests are in turbulence and transition, including computation, theory, and analytical modeling. He is a member of AIAA and ASME and a Fellow of APS. He is an associate editor of the ASME *Journal of Fluids Engineering*. He has extensive experience in teaching fluid dynamics and has written *Statistical Theory and Modeling for Turbulent Flow* and numerous articles.

Gorazd Medic is a research associate at the Center for Integrated Turbulence Simulations of the Mechanical Engineering Department at Stanford University. His research interests are in turbulence, numerical methods, and high-performance computing. He is a member of AIAA, ASME, APS, and SIAM. He has extensive experience in computational fluid dynamics for a variety of applications ranging from aircraft engines to biomechanical systems.
Fluid Dynamics with a Computational Perspective

PAUL A. DURBIN
Iowa State University

GORAZD MEDIC
Stanford University
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA
www.cambridge.org
Information on this title: www.cambridge.org/9780521850179

© Paul A. Durbin and Gorazd Medic 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United States of America.

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Durbin, Paul A.
Fluid dynamics with a computational perspective / Paul A. Durbin, Gorazd Medic.
p. cm.
ISBN 9780521850179
Includes bibliographical references and index.
TA357.D855 2007
620.1'0640151 – dc22 2007012221

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.
To Cinian, Seth, and Sanja, who were patient and supportive while we wrote, and to Professor Enoch Durbin, for a lifetime of encouragement.
Contents

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction to Viscous Flow</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Why Study Fluid Dynamics?</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Viscosity</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Navier–Stokes Equations</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Reynolds Number</td>
<td>10</td>
</tr>
<tr>
<td>1.5 Parallel Flow Approximation</td>
<td>14</td>
</tr>
<tr>
<td>1.5.1 Couette–Poiseuille Flow</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2 Oscillatory Boundary Layer</td>
<td>19</td>
</tr>
<tr>
<td>1.6 Some Basics</td>
<td>21</td>
</tr>
<tr>
<td>1.6.1 One-Dimensional Conservation Laws</td>
<td>22</td>
</tr>
<tr>
<td>1.6.2 Bernoulli’s Equation</td>
<td>24</td>
</tr>
<tr>
<td>1.6.3 Unsteady Flow</td>
<td>29</td>
</tr>
<tr>
<td>1.7 Swirl</td>
<td>31</td>
</tr>
<tr>
<td>1.7.1 Computation of Swirling Flow in an Expansion</td>
<td>34</td>
</tr>
<tr>
<td>1.8 Vorticity and Its Dynamics</td>
<td>35</td>
</tr>
<tr>
<td>1.8.1 Vortex Kinematics and Dynamics</td>
<td>37</td>
</tr>
<tr>
<td>1.8.2 Stretching and Rotation</td>
<td>42</td>
</tr>
<tr>
<td>1.8.3 Origin of Vorticity</td>
<td>44</td>
</tr>
<tr>
<td>1.8.4 Circulation and Lift</td>
<td>46</td>
</tr>
<tr>
<td>1.8.5 Diffusion of Vorticity</td>
<td>49</td>
</tr>
<tr>
<td>1.8.6 Visualization of Vortices</td>
<td>52</td>
</tr>
<tr>
<td>1.9 Turbulence</td>
<td>55</td>
</tr>
</tbody>
</table>

2 Elements of Computational Analysis | 61 |

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Geometry and Grid Generation</td>
<td>63</td>
</tr>
<tr>
<td>2.1.1 Computational Domain</td>
<td>63</td>
</tr>
<tr>
<td>2.1.2 Discrete Representation of the Geometry</td>
<td>67</td>
</tr>
<tr>
<td>2.1.3 Structured Grids</td>
<td>68</td>
</tr>
<tr>
<td>2.1.4 Unstructured Meshes</td>
<td>72</td>
</tr>
<tr>
<td>2.1.5 Mesh Quality</td>
<td>74</td>
</tr>
<tr>
<td>2.2 Computation of Fluid Flow</td>
<td>78</td>
</tr>
<tr>
<td>2.2.1 Discrete Equations</td>
<td>79</td>
</tr>
<tr>
<td>2.2.2 Centered and Upwind Differencing</td>
<td>82</td>
</tr>
</tbody>
</table>
2.2.3 Solvers 86
2.2.4 Boundary Conditions 90
2.3 Solution (In-)Accuracy 93
 2.3.1 Residuals and Convergence 93
 2.3.2 Grid Independence 94
2.4 Postprocessing and Visualization 97
 2.4.1 Streamlines 98
 2.4.2 Vectors and Contours 100
 2.4.3 Quantitative Data 102
2.5 Packages and Codes 103

3 Creeping Flow 108
 3.1 The Low Reynolds Number Limit 109
 3.1.1 Stokes Flow around a Sphere 111
 3.1.2 Resistance Matrix 116
 3.1.3 Resistance Due to Relative Motion 119
 3.1.4 Computation of Resistance Coefficients 120
 3.1.5 Eddies in Stokes Flow 122
 3.2 Hydrodynamic Lubrication 124

4 Intermediate Reynolds Numbers 132
 4.1 Separation, Vorticity, and Vortex Shedding 132
 4.1.1 Five Examples 133
 4.1.2 Secondary Circulation 151
 4.2 Wakes, Jets, and Mixing Layers 155
 4.2.1 Scaling Shear Layer Evolution 156
 4.2.2 Entrainment 159
 4.2.3 Free and Impinging Round Jets 160

5 High Reynolds Number Flow and Boundary Layers 167
 5.1 Formal Definition of the Boundary Layer 168
 5.1.1 Growth of the Boundary Layer 172
 5.1.2 Pressure Gradients and Separation 175
 5.1.3 Gridding 178
 5.2 Approximate Equations 181
 5.3 Three-Dimensional Boundary Layers 183
 5.4 Separation in Three Dimensions and Critical Points 185
 5.5 High Reynolds Number Flow over a Spheroid 188
 5.6 Potential Flow 191
 5.6.1 Point Sources 192
 5.6.2 Images 196
 5.6.3 Point Vortices and Circulation 197
 5.6.4 Stream Function 199
 5.6.5 Added Mass 201
Contents

6 Turbulent Flow

6.1 Computational Approaches 211
6.2 Statistically Averaged Method 211
 6.2.1 Eddy Viscosity Model 215
 6.2.2 Computed Example 220
 6.2.3 Limitations of Scalar Eddy Viscosity Models 222
6.3 Turbulent Shear Flows 225
 6.3.1 Boundary Layers 225
 6.3.2 Wall Functions 233
 6.3.3 Free Shear Layers 236
 6.3.4 Computed Axisymmetric Jets 237
6.4 Eddy Simulation 239
 6.4.1 Spectrum of Turbulence 239
 6.4.2 Direct Numerical Simulation 242
 6.4.3 DNS of Isotropic Turbulence 244
 6.4.4 Approximate Simulation of Large Eddies 246
6.5 Instability Theory 254
 6.5.1 Inflection Point Theorem 256
 6.5.2 Instability in Boundary Layers 259

7 Compressible Flow

7.1 Thermodynamics 264
 7.1.1 First Law 265
 7.1.2 Equation of State 266
 7.1.3 Entropy and Irreversibility 266
 7.1.4 First Law with Flow 268
 7.1.5 Isentropic Relations 270
7.2 Mach Waves 271
 7.2.1 Speed of Sound 272
 7.2.2 Occurrence of Shock Waves 273
7.3 One-Dimensional Gas Dynamics 276
 7.3.1 Normal Shock 276
 7.3.2 Supersonic Flow over a Hemisphere 278
 7.3.3 Expansion Fan 281
 7.3.4 Supersonic Flow over a Wedge 284
7.4 Quasi-One-Dimensional Gas Dynamics 286
 7.4.1 Shock Patterns and Shock-Induced Separation 292
7.5 Computation of Compressible Flows 300

8 Interfaces

8.1 Interface Conditions 308
8.2 Surface Tension 311
 8.2.1 Capillarity and Contact Angle 314
 8.2.2 Disintegration by Capillarity 316
 8.2.3 Simulation of Capillary Breakup 320
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3 Inviscid Free Surface</td>
<td>321</td>
</tr>
<tr>
<td>8.3.1 Group Velocity and Its Connection to Surface Excrescence</td>
<td>323</td>
</tr>
<tr>
<td>8.3.2 Sloshing</td>
<td>328</td>
</tr>
<tr>
<td>8.3.3 Numerical Simulation of Sloshing</td>
<td>332</td>
</tr>
<tr>
<td>8.4 Volume of Fluid Method</td>
<td>334</td>
</tr>
<tr>
<td>8.4.1 Pouring a Viscous Liquid</td>
<td>336</td>
</tr>
<tr>
<td>Bibliography</td>
<td>343</td>
</tr>
<tr>
<td>Index</td>
<td>345</td>
</tr>
</tbody>
</table>
Preface

This is a book on fluid dynamics. It is not a book on computation. Many excellent books on fluid dynamics are available: why is another needed?

In recent decades, numerical algorithms and computer power have advanced to the point that computer simulations of the Navier–Stokes equations have become routine. This vastly expands our ability to solve these equations, further extending our understanding of fluid flow and providing a tool for engineering analysis. Computer simulations are solutions of a different nature from classical exact and approximate solutions. They are numerical data rather than formulas. One of our objectives in this text is to relate computer solutions to theoretical fluid dynamics. Indeed, it is this goal, rather than computation as a tool for complex engineering analysis, that provides the guideline for this text. Computer solutions can reproduce closed-form and approximate solutions; they can illuminate the merits and limits of simple analyses; and they can provide entirely new solutions of varying degrees of complexity. The time is ripe to integrate computer solutions into fluid dynamics education.

From a pedagogical perspective, readily available, commercial computational fluid dynamics (CFD) software provides a new resource for teaching fluid dynamics. This software converts CFD from a technique used by researchers and engineers in industry into a readily accessible facility. It is a challenge to integrate such software packages into the educational structure. Most of the examples in this book have been computed with commercial software, and exercises to be solved with such software have been suggested. How far to go in this direction was a true quandary. We started out ambitiously, intending an intimate use of commercial tools, but backed off, deciding on a text that provides the reader with illustrative computations. Grids and specifications needed to effect computer simulation are described, but far short of the level of detail found in tutorials. The endeavor was to make the book useable either on its own or as an adjunct to an integrated course on fluid dynamics and computation. A lecturer might supplement this text with a computer laboratory, instructing students via tutorials.

This certainly is not a book on methods of computational fluid dynamics. We assume that a student who uses this text in conjunction with computational analysis has access to CFD software, including both flow solver and mesh generator. Methods and algorithms are mentioned only to the extent that they bear on the fidelity of computations. In other words, the perspective is that of a code user, not of a
developer. One impetus for this book was the observation by many of our colleagues that students are increasingly proficient at using software, but often without the understanding of fluid dynamics needed to use it effectively. We hope this text will be a resource for educating prospective software users.

Despite the power of computer simulation, it has not supplanted theory and analysis in fluid dynamics teaching, even at advanced levels; nor have theoretical efforts diminished within the research community. No wholesale displacement of theory by computation is remotely on the horizon. The complexity and intricacy of flow phenomena are too great, and the range of applications are too vast, for any single approach to be sufficient. Hence, in this book, we endeavor both to present some basics of the theory of fluid flow and to explore them by computer simulation. The intent is a marriage between classical theory and modern computer-aided analysis.

Deciding how much mathematics to include was another quandary. A great many texts detailing analyses and solutions to governing equations are available. It is not our intent to reproduce such material. At the same time, there is a need to establish a framework for computer-aided analysis. This means that equations and solutions must be cited. To a large extent, we have quoted results with informal derivations, providing references where detailed developments can be found. In some cases, formulas might appear out of the blue, but in almost all cases, some basis has been provided, without rigor.

The prerequisite to this book is a course on basic fluid dynamics, including elementary viscous flow. The book is self-contained, but the pace might seem fast without the prerequisite. It is directed to students at advanced undergraduate level or to graduate students at master’s level. It is also meant for scientists and engineers who want background in viscous flow phenomena.

After two chapters that provide background on the laws of fluid mechanics and survey computational methodology, the next four chapters increase the Reynolds number from creeping flow to turbulence. They are followed by a chapter on compressible flow and a final chapter on interfaces. We have been guided by the content of standard curricula in fluid mechanics.

Acknowledgments

We are extremely grateful to Frank Albina, George Constantinescu, Gianluca Iaccarino, Tomoaki Ikeda, Georgi Kalitzin, Yang Liu, Milovan Peric, Jorg Schluter, Meng Wang, Edwin van der Weide, and Xiaohua Wu for providing figures, as well as to the Institute for Mathematical Sciences, Singapore National University, for its hospitality during part of the writing. Peter Gordon of Cambridge University Press has been wonderfully encouraging.