
CHAPTER

1 Introduction to signals and systems

Welcome to Introduction to Signals and Systems. This text will focus on the

properties of signals and systems, and the relationship between the inputs

and outputs of physical systems. We will develop tools and techniques to

help us analyze, design, and simulate signals and systems.

1.1 Signals and systems

A signal is a pattern of variation of a physical quantity: a definition which

covers a wide territory. You are processing signals as you read this text.

A lecturer creates a signal as he or she talks and your ear processes these

signals. Signals are all around us. Examples include acoustical, electrical,

and mechanical signals. Signals may depend on one or more independent

variables. As the name implies, one-dimensional signals depend on one

independent variable. An example is the location of a particle moving in a

rectilinear motion, in which case the independent variable is time, t . Two-

dimensional signals depend on two independent variables. An example is a

picture that varies spatially, in which case the independent variables are the

spatial coordinates, x and y. Many of the signals and systems that you have

routinely dealt with have interesting properties that this text will explore.

A system processes signals. For example, a compact disc (CD) player

is a system that reads a digital signal from a CD and transforms it into an

electrical signal. The electrical signal goes to the speaker, which is another

system that transforms electrical signals into acoustical signals. Many sig-

nals contain information. Other signals are used only to transport energy.

For example, the signal from a wall socket is boring in terms of information

content, but very useful for carrying energy.
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2 Introduction to signals and systems

Signals can be categorized as analog, discrete or digital. They are sum-

marized as follows:

� Analog signals: signals that vary continuously in amplitude and time.

The independent variable is not necessarily time, it could also be a spatial

coordinate.
� Discrete-time signals: signals that have continuous amplitude but only

exist at discrete times. These signals are represented as sequences of

numbers.
� Digital signals: signals that have discrete amplitude and time. These sig-

nals are represented by sequences of numbers with finite precision. They

are used when processing information by computer.

We will often be interested in converting signals from one type to another.

For example, in a chemistry laboratory, a continuous-time transducer mea-

sures the analog value of a physical quantity. We will often use a continuous-

to-discrete (analog-to-digital) converter to capture the signal into a computer

for processing.

Systems can be categorized as linear or nonlinear. Systems are said to

be linear when scaling and superposition hold. For linear systems, if the

input to the system is scaled by some constant a, the output of the system

will be scaled by the same amount. Thus, if the input to the system is

doubled, so will be the output of the system. Linear systems also obey the

superposition principle. Thus, for a linear system, the response of the system

to a combination of N inputs is simply the sum of the responses to each

input considered individually.

Systems can also be classified as time-variant or time-invariant. When

the parameters of a system remain constant during operation, the system

is said to be time-invariant. When the parameters can vary as a function

of time, the system is said to be time-variant. For time-invariant systems,

the system responds the same yesterday, today, and tomorrow. Although

time-varying systems without nonlinearity are still considered linear, such

systems are considerably more difficult to analyze and design.

In this text, we will primarily be interested in linear and time-invariant

systems, or LTI systems for short. They are very useful for signal processing

and system modeling. While most physical signals and systems are not LTI,

surprisingly many can be approximated as LTI over a specified time domain

of interest. Nonlinear systems have some very interesting and surprising
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3 1.1 Signals and systems

properties but are usually much more difficult to handle mathematically,

and there are limited methods available for solving nonlinear systems.

A familiar example of signals and systems is the recording and playback

of audio signals such as music and voice. Over the years there have been

major changes in the technology used resulting in dramatic improvements

in quality. Milestones in audio technology include:

� Phonograph: invented by Thomas Edison in 1877.
� Gramophone: developed by Emile Berliner in 1887 (70 revolution per

minute or rpm).
� 78 rpm record: 1930s.
� AM (amplitude modulation) radio: 1920s
� 33 1/3 LP (long-playing) record: introduced by CBS in 1948 (held about

20 minutes on each side).
� 45 EP (extended-playing) record: introduced by RCA in 1948 (more

portable, held 5–6 minutes on each side).
� Stereo: 1956.
� Stereo FM (frequency modulation): 1960s.
� CD (compact disc): developed by Sony and Philips in 1982 (holds about

70 minutes).

The information density has improved over time. On a conventional LP

record, each track is about 100 micrometers wide. On a CD, the tracks are

1.6 micrometers wide, so tracks are packed 60 times more densely. On a

CD, the information is stored by a series of pits burned with a powerful laser.

The information is read by measuring the reflection from another laser to

determine where the pits are located. The locations encode a series of binary

numbers, so a CD is really just a physical encoding of a long sequence of

1s and 0s.

Signals may be represented as a graph with time on the horizontal axis and

amplitude of the signals on the vertical axis. An oscilloscope is a system that

converts an electrical signal into an optical signal showing such a graph,

allowing us to examine how the signal varies as a function of time. A

spectrum analyzer is a system that converts an electrical signal into an

optical signal showing a graph of what frequencies are in the input, called the

spectrum of a signal. We will have much more to say about the spectrum of a

signal. Knowing the frequency content of a signal allows us to characterize

the signal.
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4 Introduction to signals and systems
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Fig. 1.1. A 200 Hz sine
wave,
x(t) = cos[2π(200t)].
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Fig. 1.2. The spectrum of a
200 Hz sine wave.

1.2 Examples of signals

Let us now consider some simple examples of signals. Sinusoidal signals

will prove to be one of the most useful signals we will encounter. Mathe-

matically, a sinusoidal signal may be represent as

x(t) = A cos(2π f t + φ), (1.1)

where A denotes the amplitude or magnitude of the signal, f its corre-

sponding frequency, and φ its phase. Figure 1.1 shows a sine wave whose

amplitude is 1 and phase is 0, and which has a frequency of 200 Hz (0.2 kHz).

Figure 1.2 shows the spectrum of the same sine wave. The spectrum of a

signal consists of a graph that shows what frequencies are present in the

signal as well as the magnitudes of the frequency components. Thus, as

expected, the spectrum of a 200 Hz sine wave (Figure 1.2) shows a single

peak centered at 200 Hz with amplitude 1.

Figure 1.3 shows a periodic square wave at 200 Hz, and Figure 1.4

shows its spectrum. The square wave alternates between 1 and −1 with

a period of 0.005 s. The spectrum consists of spikes at 200 Hz, 600 Hz,

1000 Hz, 1400 Hz, etc. The largest peak is at the fundamental frequency

f0 of 200 Hz. The next peaks are at the third harmonic 3 f0, fifth harmonic
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5 1.2 Examples of signals

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
−1

−0.5

0

0.5

1

200Hz square wave

Time (s)

A
m

p
lit

u
d

e

Fig. 1.3. A 200 Hz square
wave.
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Fig. 1.4. The spectrum of a
200 Hz square wave.
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Fig. 1.5. A 200 Hz triangle
wave.

5 f0, seventh harmonic 7 f0, and so forth. The amplitudes drop off for higher

harmonics. Later we will show how these amplitudes and frequencies can

be determined analytically using Fourier series and numerically using the

M AT L A B command fft.

Figure 1.5 shows a triangle wave at 200 Hz and Figure 1.6 shows its

spectrum. Note that the spectrum also contains the odd harmonics, but the

amplitudes drop off quickly compared to the amplitudes of the square wave

of Figure 1.4.

The previous examples suggest that we could construct any signal by

summing sinusoids of different amplitudes and frequencies. This underly-

ing principle forms the basis of Fourier series. The spectrum shows the am-
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6 Introduction to signals and systems
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Fig. 1.6. The spectrum of a
200 Hz triangle wave.
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Fig. 1.7. A graph of
digitized signal.

plitude of the coefficients of the Fourier series. We will be interested in both

synthesizing signals from sums of other signals (for example sinusoids) and

analyzing signals by determining the amplitudes of the frequencies within

the signal.

As a more elaborate example, Figure 1.7 shows a digital representation

of a two-channel audio signal sampled at 44 kHz (CD quality). Clearly, the

eye is not trained to interpret the signal, even when zooming in on a short

segment. Transforming the signal into an acoustical signal, however, makes

it clearly recognizable as the beginning of Beethoven’s Fifth Symphony.

The above examples serve to remind us that there are many different ways

to represent a signal. We can identify a signal by plotting its variation with

time, analyzing its spectrum, or listening to how the signal changes as a

function of time. These approaches can all be used to characterize the same

signal. Depending on the application, one approach may be more useful

than the others.

Another example of a system that uses signals is the telephone. Dialing

a touch-tone telephone generates a series of tones. These tones are the

superposition or sum of a pair of sine waves, as shown in Table 1.1. You

could build your own dialer by producing these tones with another system

such as your computer. Similarly, you could determine which phone number
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7 1.3 Mathematical foundations

Table 1.1. Touch-tone telephone tones

Frequencies 1209 Hz 1336 Hz 1477 Hz

697 Hz 1 2 3
770 Hz 4 5 6
852 Hz 7 8 9
941 Hz * 0 #

was dialed by looking at the spectrum of the tones and observing what

frequencies are present.

Having seen various examples of signals and systems, we are now ready

to lay the mathematical foundations to understand them in detail.

1.3 Mathematical foundations

Euler’s formula (or identity) was introduced in calculus. It states that a

complex exponential1 can be expressed as the sum of a cosine function and

a sine function:

1

Im

Re

sinq ejq

cosq
q

Fig. 1.8. Complex
exponential plotted on a
complex plane.

ejθ = cos θ + j sin θ, (1.2)

where j = √−1.2 Euler’s identity can be easily proved by expanding ex in

Taylor series and replacing x by jθ . Figure 1.8 shows Eq. (1.2) plotted as a

vector on the complex plane, where the horizontal axis corresponds to the

real axis, and the vertical axis corresponds to the imaginary axis. Observe

that the length or magnitude of the vector is 1 and the angle is θ , where θ

is measured in radians, and is positive in the counterclockwise sense from

the horizontal or real axis. Similarly, we can show that

e−jθ = cos θ − j sin θ. (1.3)

Therefore, in terms of complex exponentials, cosine and sine can be

expressed as

cos θ = 1

2
(ejθ + e−jθ ) and sin θ = 1

2j
(ejθ − e−jθ ). (1.4)

1 Because complex arithmetic will be used extensively throughout the text, the reader is
encouraged to review Appendix A for a detailed discussion.

2 Engineers often use j to represent complex unity. The variable i is reserved to denote the current
of electrical systems.
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8 Introduction to signals and systems
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Fig. 1.9. Graphical
representation of (a)
cosine and (b) sine on a
complex plane.

These sums are represented graphically in Figure 1.9. Recall that the com-

plex conjugate of a complex number a + jb is simply a − jb, where a and

b are real constants. Thus, ejθ and e−jθ are complex conjugates, because

their real parts are identical and their imaginary parts are the negative of

one another.

A cosq

w (rad/s)

A / 2 cosq

A / 2

A / 2

−w

q
−q

Im

Re

Fig. 1.10. Graphical
representation of sinusoid
on a complex plane.

In terms of complex exponentials, we can now write a simple sine wave

as follows:

x(t) = A cos(ωt + φ) = A

2

[
ej(ωt+φ) + e−j(ωt+φ)

]
, (1.5)

where A and φ are real constants. The units of ω are radians per second. This

is shown graphically in Figure 1.10, where both vectors are now functions

of time, t . Note that as t increases, the upper vector rotates counterclock-

wise at a rate determined by the angular frequency ω and the lower vector

rotates clockwise at an angular frequency of −ω. Thus, we define a vec-

tor with a negative frequency (−ω) as one that rotates in the clockwise

direction.

There are many different ways of representing a sinusoid. Another rep-

resentation utilizes complex exponentials and the definition of the real part

of a complex number as follows:

x(t) = A cos(ωt + φ) = Re
{

Aej(ωt+φ)}, (1.6)

where A and φ are real constants, and Re{ } indicates the real part of an

expression. Using Euler’s identity, we have:

Aej(ωt+φ) = A cos(ωt + φ) + jA sin(ωt + φ). (1.7)

By inspection, note that x(t) of Eq. (1.5) is simply the real part of Eq. (1.7).
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9 1.4 Phasors

Finally, using Eq. (1.6), we can also represent a sinusoid as:

x(t) = Re{Aejφejωt} = Re{Xejωt}. (1.8)

This is called the phasor notation. The phasor X = Aejφ contains the am-

plitude (A) and phase (φ) information of the sinusoid, corresponding to the

length or magnitude and angle of the vector in the complex plane.

We have introduced various ways of representing signals. They will be

used extensively throughout the text, and the reader should become very

familiar with these different representations and how they are related.

1.4 Phasors

We have seen that sine waves appear to be important building blocks. Thus,

A cos(wt + q)

w = 2p f (rad/s)

A
q

Im

Re

Fig. 1.11. The real part of
a rotating phasor.

we expect that we can construct more elaborate signals as the sums of sine

waves of various frequencies, amplitudes, and phases. We can write any

sine wave as

x(t) = A cos (ωt + θ ). (1.9)

This can also be represented with a phasor as follows:

x(t) = Re{Aejθejωt}, (1.10)

which can be viewed as a vector on the complex plane, as shown in

Figure 1.11. The vector rotates at a rate (called the angular frequency)

of ω in units of radians per second. The real part of the vector corresponds

to the value of the sinusoid of Eq. (1.8) at time t . The wave is periodic with

a period T between repetitions, where the period is given by T = 2π/ω.

We often wish to refer to the rate at which the wave repeats. Let us define

this rate as f = ω/(2π ) = 1/T , where f is called the frequency, measured

in units of hertz (Hz) or cycles/second. Therefore, in terms of frequency,

we often rewrite Eq. (1.9) as

x(t) = A cos (2π f t + θ ). (1.11)

Also observe that the peaks occur at times

t = 2πn − θ

2π f
, n = 0, ±1, ±2, . . . . (1.12)

Signals generally represent physical quantities and should be dimensioned

appropriately. For example, the x-axis may be in dimensions of seconds,
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10 Introduction to signals and systems

minutes, or feet. The y-axis may be in volts, meters, degrees Celsius, etc.

For example, a facetious set of dimensions for calibrating speedometers

is furlongs/fortnight. In this text we will typically use the SI (Système

International) metric units.

In analyzing signals, we often will be interested in adding multiple sine

waves of the same frequency. Consider two signals x1(t) and x2(t) of the

same angular frequency, ω:

x1(t) = A1 cos(ωt + θ1)

x2(t) = A2 cos(ωt + θ2),
(1.13)

whose sum is given by

x(t) = x1(t) + x2(t) = A cos(ωt + θ ). (1.14)

Not surprisingly, the amplitude (A) and phase (θ ) of the new signal x(t)

are related to the amplitudes and phases of x1(t) and x2(t), and they can be

obtained through simple algebraic manipulations. Let us first expand x1(t)

and x2(t) using the trigonometric identity for the cosine of the sum of two

angles,

x1(t) = A1 cos(ωt) cos θ1 − A1 sin(ωt) sin θ1

x2(t) = A2 cos(ωt) cos θ2 − A2 sin(ωt) sin θ2.
(1.15)

Summing the coefficients of the cosine and sine terms, we get

x(t) =

⎛
⎜⎝A1 cos θ1 + A2 cos θ2︸ ︷︷ ︸

Ac

⎞
⎟⎠ cos(ωt)

(1.16)

−

⎛
⎜⎝A1 sin θ1 + A2 sin θ2︸ ︷︷ ︸

As

⎞
⎟⎠ sin(ωt),

which can be rewritten as

x(t) = Ac cos(ωt) − As sin(ωt)

= A cos θ cos(ωt) − A sin θ sin(ωt) (1.17)

= A cos(ωt + θ ).

By matching the coefficients of cos(ωt) and sin(ωt), we note immediately

that

A cos θ = Ac

A sin θ = As,
(1.18)
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