## The Geometry of Evolution

The metaphor of the adaptive landscape – that evolution via the process of natural selection can be visualized as a journey across adaptive hills and valleys, mountains and ravines – permeates both evolutionary biology and the philosophy of science. The focus of this book is to demonstrate to the reader that the adaptive landscape concept can be put into actual analytical practice through the usage of theoretical morphospaces – geometric spaces of both existent and nonexistent biological form – and to demonstrate the power of the adaptive landscape concept in understanding the process of evolution. The adaptive landscape concept further allows us to take a spatial approach to the concepts of natural selection, evolutionary constraint and evolutionary development. For that reason, this book relies heavily on spatial graphics to convey the concepts developed within these pages, and less so on formal mathematics.

GEORGE McGHEE is Professor of Paleobiology in the Department of Geological Sciences at Rutgers University, New Jersey, USA. He is a past Fellow of the Konrad Lorenz Institute for Evolution and Cognition Research in Vienna, Austria.

## The Geometry of Evolution

Adaptive Landscapes and Theoretical Morphospaces

GEORGE R. McGHEE Jr. Rutgers University



| Cambridge University Press                                                         |
|------------------------------------------------------------------------------------|
| 978-0-521-84942-5 - The Geometry of Evolution: Adaptive Landscapes and Theoretical |
| Morphospaces                                                                       |
| George R. McGhee                                                                   |
| Frontmatter                                                                        |
| More information                                                                   |
|                                                                                    |

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521849425

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing-in-Publication Data

McGhee, George R. The Geometry of evolution : adaptive landscapes and theoretical morphospaces / George R. McGhee, Jr. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-521-84942-5 (hardback) ISBN-10: 0-521-84942-X (hardback) 1. Evolution (Biology)–Mathematical models. 2. Adaptation (Biology)–Mathematical models. 3. Morphology–Mathematical models. I. Title.

> QH371.3.M37M34 2006 576.801′5118–dc22 2006026495

ISBN-13 978-0-521-84942-5 hardback ISBN-10 0-521-84942-X hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> For Marae A leannain m'òige, mo bhean.

| Cambridge University Press                                                         |
|------------------------------------------------------------------------------------|
| 978-0-521-84942-5 - The Geometry of Evolution: Adaptive Landscapes and Theoretical |
| Morphospaces                                                                       |
| George R. McGhee                                                                   |
| Frontmatter                                                                        |
| More information                                                                   |
|                                                                                    |

## Contents

|   | Preface                                                 | <i>page</i> xi |
|---|---------------------------------------------------------|----------------|
| 1 | The concept of the adaptive landscape                   | 1              |
|   | What is an adaptive landscape?                          | 1              |
|   | Modelling evolution in adaptive landscapes              | 4              |
| 2 | Modelling natural selection in adaptive landscapes      | 6              |
|   | Visualizing natural selection                           | 6              |
|   | Modelling directional selection                         | 7              |
|   | Modelling stabilizing selection                         | 10             |
|   | Modelling disruptive selection                          | 13             |
|   | Modelling less-than-optimum evolution                   | 16             |
|   | Evolutionary topology of adaptive landscapes            | 19             |
|   | Why has evolution not ceased?                           | 22             |
|   | Modelling environmental and ecological change           | 24             |
| 3 | Modelling evolutionary phenomena in adaptive landscapes | 31             |
|   | Evolution in geological time                            | 31             |
|   | Modelling convergent evolution                          | 32             |
|   | Modelling iterative evolution                           | 36             |
|   | Modelling speciation by cladogenesis                    | 38             |
|   | Modelling hyperdimensionality in adaptive landscapes    | 45             |
|   | Are adaptive landscapes of heuristic value only?        | 51             |
| 4 | The concept of the theoretical morphospace              | 57             |
|   | What is a theoretical morphospace?                      | 57             |
|   | Procedural phases of theoretical morphospace analyses   | 60             |
|   | Creating theoretical morphospaces: an example           | 63             |

viii

| Cambridge University Press                                                         |
|------------------------------------------------------------------------------------|
| 978-0-521-84942-5 - The Geometry of Evolution: Adaptive Landscapes and Theoretical |
| Morphospaces                                                                       |
| George R. McGhee                                                                   |
| Frontmatter                                                                        |
| More information                                                                   |
|                                                                                    |

Contents

| 5 | Analysing the role of adaptive evolution in                  |     |
|---|--------------------------------------------------------------|-----|
|   | theoretical morphospaces                                     | 71  |
|   | Functional analysis in theoretical morphospace               | 71  |
|   | Adaptive significance of existing and nonexistent            |     |
|   | ammonoid form                                                | 72  |
|   | Adaptive significance of existing and nonexistent            |     |
|   | brachiopod form                                              | 77  |
|   | Adaptive significance of existing and nonexistent plant form | 82  |
| 6 | Analysing evolutionary phenomena in theoretical morphospaces | 90  |
|   | Analysing evolution in geological time                       | 90  |
|   | Analysing convergent evolution in theoretical morphospace    | 90  |
|   | Analysing iterative evolution in theoretical morphospace     | 96  |
|   | Analysing biodiversity crises in theoretical morphospace     | 100 |
| 7 | Evolutionary constraint in theoretical morphospace           | 108 |
|   | Potential causes of empty morphospace                        | 108 |
|   | Modelling geometric constraint                               | 109 |
|   | Modelling functional constraint                              | 111 |
|   | Modelling phylogenetic constraint                            | 112 |
|   | Modelling developmental constraint                           | 114 |
|   | Analysing evolutionary constraint in                         |     |
|   | theoretical morphospaces                                     | 117 |
|   | Mapping geometric constraint boundaries                      | 118 |
|   | Mapping functional constraint boundaries                     | 124 |
|   | Analysing intrinsic constraints                              | 127 |
|   | Modelling the evolution of intrinsic constraints             | 134 |
|   | Evolutionary constraint and the phenomenon of                |     |
|   | convergent evolution                                         | 144 |
|   | Is the concept of phylogenetic constraint of heuristic       |     |
|   | value only?                                                  | 150 |
| 8 | Evolutionary development in theoretical morphospace          | 152 |
|   | The concept of developmental constraint                      | 152 |
|   | Transformation theory and theoretical morphospaces           | 155 |
|   | Epigenetic landscapes and theoretical morphospaces           | 159 |
|   | Analysing development in theoretical morphospace             | 163 |
|   | Theoretical developmental morphospaces?                      | 167 |
|   | How does an organism come to be?                             | 172 |

| ambridge University Press                                                        |
|----------------------------------------------------------------------------------|
| 78-0-521-84942-5 - The Geometry of Evolution: Adaptive Landscapes and Theoretica |
| lorphospaces                                                                     |
| eorge R. McGhee                                                                  |
| rontmatter                                                                       |
| lore information                                                                 |
|                                                                                  |

|   | Contents                                             | ix  |
|---|------------------------------------------------------|-----|
| 9 | There is much to be done                             | 174 |
|   | Adaptive landscapes and theoretical morphospaces     | 174 |
|   | Current progress in theoretical morphospace analyses | 175 |
|   | What more is to be done?                             | 177 |
|   | The re-emergence of the science of morphology        | 180 |
|   | References                                           | 185 |
|   | Index                                                | 197 |

## Preface

The concept of the adaptive landscape is the creation of the great American geneticist Sewall Wright who, along with the equally great British scientists R.A. Fisher and J.B.S. Haldane, crafted the Neo-Darwinian synthesis of evolutionary theory in the 1930s. The metaphor of the adaptive landscape, that evolution via the process of natural selection could be visualized as a journey across adaptive hills and valleys, mountains and ravines, permeated both evolutionary biology and the philosophy of science through the succeeding years of the twentieth century. Yet critics of the adaptive landscape concept have maintained that the concept is of heuristic value only; that is, it is fine for creating conceptual models, but that you cannot actually use the concept in analysing the evolution of actual animals or plants. That criticism became invalid in the year 1966 when the palaeontologist David M. Raup used computer simulations to model hypothetical life forms that have never existed in the evolution of life on Earth, and who subsequently created the concept of the theoretical morphospace.

The focus of this book is to demonstrate to the reader the power of the adaptive landscape concept in understanding the process of evolution, and to demonstrate that the adaptive landscape concept can be put into actual analytical practice through the usage of theoretical morphospaces. The adaptive landscape concept allows us to visualize the possible effects of natural selection through simple spatial relationships, rather than complicated modelling of changing environmental or ecological conditions. For that reason, this book relies heavily on spatial graphics to convey the concepts developed within these pages, and less so on formal mathematics.

I thank the Santa Fe Institute for the invitation to visit and work on computational methods in theoretical morphology in 2000, for it was

xii

Preface

at the Santa Fe Institute that the idea of writing this book came to me in conversations with Dave Raup. I thank the Konrad Lorenz Institute for Evolution and Cognition Research for the Fellowship that enabled me to work at the institute in 2005, for it was there that I developed many of the ideas presented in Chapters 7 and 8 of this book. Finally, I thank my wife, Marae, for her patient love.