
1Introduction

From determining the cheapest way to make a hot dog to monitoring the workings
of a factory, there are many complex computational problems to be solved. Before
executable code can be produced, computer scientists need to be able to design the
algorithms that lie behind the code, be able to understand and describe such algo-
rithms abstractly, and be confident that they work correctly and efficiently. These are
the goals of computer scientists.

A Computational Problem: A specification of a computational problem uses pre-
conditions and postconditions to describe for each legal input instance that the com-
putation might receive, what the required output or actions are. This may be a func-
tion mapping each input instance to the required output. It may be an optimization
problem which requires a solution to be outputted that is “optimal” from among a
huge set of possible solutions for the given input instance. It may also be an ongoing
system or data structure that responds appropriately to a constant stream of input.

Example: The sorting problem is defined as follows:

Preconditions: The input is a list of n values, including possible repetitions.

Postconditions: The output is a list consisting of the same n values in non-
decreasing order.

An Algorithm: An algorithm is a step-by-step procedure which, starting with an in-
put instance, produces a suitable output. It is described at the level of detail and ab-
straction best suited to the human audience that must understand it. In contrast,
code is an implementation of an algorithm that can be executed by a computer. Pseu-
docode lies between these two.

An Abstract Data Type: Computers use zeros and ones, ANDs and ORs, IFs and
GOTOs. This does not mean that we have to. The description of an algorithm may
talk of abstract objects such as integers, reals, strings, sets, stacks, graphs, and trees;

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84931-9 - How to Think About Algorithms
Jeff Edmonds
Excerpt
More information

http://www.cambridge.org/0521849314
http://www.cambridge.org
http://www.cambridge.org

Introduction

2

abstract operations such as “sort the list,” “pop the stack,” or “trace a path”; and ab-
stract relationships such as greater than, prefix, subset, connected, and child. To be
useful, the nature of these objects and the effect of these operations need to be un-
derstood. However, in order to hide details that are tedious or irrelevant, the precise
implementations of these data structure and algorithms do not need to be specified.
For more on this see Chapter 3.

Correctness: An algorithm for the problem is correct if for every legal input instance,
the required output is produced. Though a certain amount of logical thinking is re-
quireds, the goal of this text is to teach how to think about, develop, and describe
algorithms in such way that their correctness is transparent. See Chapter 28 for the
formal steps required to prove correctness, and Chapter 22 for a discussion of forall
and exist statements that are essential for making formal statements.

Running Time: It is not enough for a computation to eventually get the correct
answer. It must also do so using a reasonable amount of time and memory space.
The running time of an algorithm is a function from the size n of the input in-
stance given to a bound on the number of operations the computation must do. (See
Chapter 23.) The algorithm is said to be feasible if this function is a polynomial like
Time(n) = �(n2), and is said to be infeasible if this function is an exponential like
Time(n) = �(2n). (See Chapters 24 and 25 for more on the asymptotics of functions.)
To be able to compute the running time, one needs to be able to add up the times
taken in each iteration of a loop and to solve the recurrence relation defining the
time of a recursive program. (See Chapter 26 for an understanding of

∑n
i=1 i = �(n2),

and Chapter 27 for an understanding of T(n) = 2T(n
2) + n = �(n log n).)

Meta-algorithms: Most algorithms are best described as being either iterative or
recursive. An iterative algorithm (Part One) takes one step at a time, ensuring that
each step makes progress while maintaining the loop invariant. A recursive algorithm
(Part Two) breaks its instance into smaller instances, which it gets a friend to solve,
and then combines their solutions into one of its own.

Optimization problems (Part Three) form an important class of computational
problems. The key algorithms for them are the following. Greedy algorithms (Chap-
ter 16) keep grabbing the next object that looks best. Recursive backtracking algo-
rithms (Chapter 17) try things and, if they don’t work, backtrack and try something
else. Dynamic programming (Chapter 18) solves a sequence of larger and larger in-
stances, reusing the previously saved solutions for the smaller instances, until a solu-
tion is obtained for the given instance. Reductions (Chapter 20) use an algorithm for
one problem to solve another. Randomized algorithms (Chapter 21) flip coins to help
them decide what actions to take. Finally, lower bounds (Chapter 7) prove that there
are no faster algorithms.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84931-9 - How to Think About Algorithms
Jeff Edmonds
Excerpt
More information

http://www.cambridge.org/0521849314
http://www.cambridge.org
http://www.cambridge.org

PART ONE

Iterative Algorithms and
Loop Invariants

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84931-9 - How to Think About Algorithms
Jeff Edmonds
Excerpt
More information

http://www.cambridge.org/0521849314
http://www.cambridge.org
http://www.cambridge.org

51 Iterative Algorithms: Measures of
Progress and Loop Invariants

Using an iterative algorithm to solve a computa-
tional problem is a bit like following a road, possibly
long and difficult, from your start location to your
destination. With each iteration, you have a method
that takes you a single step closer. To ensure that you
move forward, you need to have a measure of progress
telling you how far you are either from your starting
location or from your destination. You cannot expect
to know exactly where the algorithm will go, so you
need to expect some weaving and winding. On the
other hand, you do not want to have to know how
to handle every ditch and dead end in the world.
A compromise between these two is to have a loop
invariant, which defines a road (or region) that you
may not leave. As you travel, worry about one step
at a time. You must know how to get onto the road from any start location. From
every place along the road, you must know what actions you will take in order to
step forward while not leaving the road. Finally, when sufficient progress has been
made along the road, you must know how to exit and reach your destination in a
reasonable amount of time.

1.1 A Paradigm Shift: A Sequence of Actions vs. a Sequence
of Assertions

Understanding iterative algorithms requires understanding the difference between
a loop invariant, which is an assertion or picture of the computation at a particular
point in time, and the actions that are required to maintain such a loop invariant.
Hence, we will start with trying to understand this difference.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84931-9 - How to Think About Algorithms
Jeff Edmonds
Excerpt
More information

http://www.cambridge.org/0521849314
http://www.cambridge.org
http://www.cambridge.org

Iterative Algorithms and Loop Invariants

6

Max(a, b, c)

PreCond: Input has 3 numbers.

m = a

assert : m is max in {a}.

if(b > m)

m = b

end if

assert: m is max in {a,b}.

if(c > m)

m = c

end if

assert: m is max in {a,b,c}.

return(m)

PostCond: return max in {a,b,c}.

end algorithm

One of the first important paradigm shifts
that programmers struggle to make is from
viewing an algorithm as a sequence of actions to
viewing it as a sequence of snapshots of the state
of the computer. Programmers tend to fixate
on the first view, because code is a sequence of
instructions for action and a computation is a
sequence of actions. Though this is an impor-
tant view, there is another. Imagine stopping
time at key points during the computation and
taking still pictures of the state of the computer.
Then a computation can equally be viewed as
a sequence of such snapshots. Having two ways
of viewing the same thing gives one both more
tools to handle it and a deeper understanding of
it. An example of viewing a computation as an
alteration between assertions about the current
state of the computation and blocks of actions
that bring the state of the computation to the
next state is shown here.

The Challenge of the Sequence-of-Actions View: Suppose one is designing a
new algorithm or explaining an algorithm to a friend. If one is thinking of it as se-
quence of actions, then one will likely start at the beginning: Do this. Do that. Do
this. Shortly one can get lost and not know where one is. To handle this, one simulta-
neously needs to keep track of how the state of the computer changes with each new
action. In order to know what action to take next, one needs to have a global plan of
where the computation is to go. To make it worse, the computation has many IFs and
LOOPS so one has to consider all the various paths that the computation may take.

The Advantages of the Sequence of Snapshots View: This new paradigm is
useful one from which one can think about, explain, or develop an algorithm.

Pre- and Postconditions: Before one can consider an algorithm, one needs to care-
fully define the computational problem being solved by it. This is done with pre- and
postconditions by providing the initial picture, or assertion, about the input instance
and a corresponding picture or assertion about required output.

Start in the Middle: Instead of starting with the first line of code, an alternative way
to design an algorithm is to jump into the middle of the computation and to draw
a static picture, or assertion, about the state we would like the computation to be
in at this time. This picture does not need to state the exact value of each variable.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84931-9 - How to Think About Algorithms
Jeff Edmonds
Excerpt
More information

http://www.cambridge.org/0521849314
http://www.cambridge.org
http://www.cambridge.org

Measures of Progress and Loop Invariants

7

Instead, it gives general properties and relationships between the various data struc-
tures that are key to understanding the algorithm. If this assertion is sufficiently gen-
eral, it will capture not just this one point during the computation, but many similar
points. Then it might become a part of a loop.

Sequence of Snapshots: Once one builds up a sequence of assertions in this way,
one can see the entire path of the computation laid out before one.

Fill in the Actions: These assertions are just static snapshots of the computation
with time stopped. No actions have been considered yet. The final step is to fill in
actions (code) between consecutive assertions.

One Step at a Time: Each such block of actions can be executed completely inde-
pendently of the others. It is much easier to consider them one at a time than to
worry about the entire computation at once. In fact, one can complete these blocks
in any order one wants and modify one block without worrying about the effect on
the others.

Fly In from Mars: This is how you should fill in the code between the ith and the
i + 1st assertions. Suppose you have just flown in from Mars, and absolutely the only
thing you know about the current state of your computation is that the ith assertion
holds. The computation might actually be in a state that is completely impossible to
arrive at, given the algorithm that has been designed so far. It is allowing this that
provides independence between these blocks of actions.

Take One Step: Being in a state in which the ith assertion holds, your task is simply
to write some simple code to do a few simple actions, that change the state of the
computation so that the i + 1st assertion holds.

Proof of Correctness of Each Step: The proof that your algorithm works can also
be done one block at a time. You need to prove that if time is stopped and the state of
the computation is such that the ith assertion holds and you start time again just long
enough to execute the next block of code, then when you stop time again the state of
the computation will be such that the i + 1st assertion holds. This proof might be
a formal mathematical proof, or it might be informal handwaving. Either way, the
formal statement of what needs to be proved is as follows:

〈ith−assertion〉& codei ⇒ 〈i + 1st−assertion〉

Proof of Correctness of the Algorithm: All of these individual steps can be put
together into a whole working algorithm. We assume that the input instance given
meets the precondition. At some point, we proved that if the precondition holds and
the first block of code is executed, then the state of the computation will be such

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84931-9 - How to Think About Algorithms
Jeff Edmonds
Excerpt
More information

http://www.cambridge.org/0521849314
http://www.cambridge.org
http://www.cambridge.org

Iterative Algorithms and Loop Invariants

8

that first assertion holds. At some other point, we proved that if the first assertion
holds and the second block of code is executed then the state of the computation
will be such that second assertion holds. This was done for each block. All of these
independently proved statements can be put together to prove that if initially the
input instance meets the precondition and the entire code is executed, then in the
end the state of the computation will be such that the postcondition has been met.
This is what is required to prove that algorithm works.

1.2 The Steps to Develop an Iterative Algorithm

Iterative Algorithms: A good way to structure many computer programs is to store
the key information you currently know in some data structure and then have each
iteration of the main loop take a step towards your destination by making a simple
change to this data.

Loop Invariant: A loop invariant expresses important relationships among the
variables that must be true at the start of every iteration and when the loop termi-
nates. If it is true, then the computation is still on the road. If it is false, then the
algorithm has failed.

The Code Structure: The basic structure of the code is as follows.

begin routine
〈pre-cond〉
codepre-loop % Establish loop invariant
loop

〈loop-invariant 〉
exit when 〈exit-cond 〉
codeloop % Make progress while maintaining the loop invariant

end loop
codepost-loop % Clean up loose ends
〈post-cond 〉

end routine

Proof of Correctness: Naturally, you want to be sure your algorithm will work on
all specified inputs and give the correct answer.

Running Time: You also want to be sure that your algorithm completes in a reason-
able amount of time.

The Most Important Steps: If you need to design an algorithm, do not start by typ-
ing in code without really knowing how or why the algorithm works. Instead, I recom-
mend first accomplishing the following tasks. See Figure 1.1. These tasks need to fit

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84931-9 - How to Think About Algorithms
Jeff Edmonds
Excerpt
More information

http://www.cambridge.org/0521849314
http://www.cambridge.org
http://www.cambridge.org

Measures of Progress and Loop Invariants

9

Define Problem Define Loop
Invariants

Define Step

Make Progress Initial Conditions Ending

Exit

Define Exit Condition Maintain Loop Inv

Define Measure of
Progress

79 km
to school

Figure 1.1: The requirements of an iterative algorithm.

together in very subtle ways. You may have to cycle through them a number of times,
adjusting what you have done, until they all fit together as required.

1) Specifications: What problem are you solving? What are its pre- and postcon-
ditions—i.e., where are you starting and where is your destination?

2) Basic Steps: What basic steps will head you more or less in the correct direction?

3) Measure of Progress: You must define a measure of progress: where are the mile
markers along the road?

4) The Loop Invariant: You must define a loop invariant that will give a picture of
the state of your computation when it is at the top of the main loop, in other words,
define the road that you will stay on.

5) Main Steps: For every location on the road, you must write the pseudocode
codeloop to take a single step. You do not need to start with the first location. I rec-
ommend first considering a typical step to be taken during the middle of the compu-
tation.

6) Make Progress: Each iteration of your main step must make progress according
to your measure of progress.

7) Maintain Loop Invariant: Each iteration of your main step must ensure that the
loop invariant is true again when the computation gets back to the top of the loop.
(Induction will then prove that it remains true always.)

8) Establishing the Loop Invariant: Now that you have an idea of where you are go-
ing, you have a better idea about how to begin. You must write the pseudocode

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84931-9 - How to Think About Algorithms
Jeff Edmonds
Excerpt
More information

http://www.cambridge.org/0521849314
http://www.cambridge.org
http://www.cambridge.org

Iterative Algorithms and Loop Invariants

10

codepre-loop to initially establish the loop invariant. How do you get from your house
onto the correct road?

9) Exit Condition: You must write the condition 〈exit-cond 〉 that causes the compu-
tation to break out of the loop.

10) Ending: How does the exit condition together with the invariant ensure that the
problem is solved? When at the end of the road but still on it, how do you produce the
required output? You must write the pseudocode codepost-loop to clean up loose ends
and to return the required output.

11) Termination and Running Time: How much progress do you need to make be-
fore you know you will reach this exit? This is an estimate of the running time of your
algorithm.

12) Special Cases: When first attempting to design an algorithm, you should only
consider one general type of input instances. Later, you must cycle through the steps
again considering other types of instances and special cases. Similarly, test your al-
gorithm by hand on a number of different examples.

13) Coding and Implementation Details: Now you are ready to put all the pieces to-
gether and produce pseudocode for the algorithm. It may be necessary at this point
to provide extra implementation details.

14) Formal Proof: If the above pieces fit together as required, then your algorithm
works.

EXAMPLE 1.2.1
The Find-Max Two-Finger Algorithm
to Illustrate These Ideas

1) Specifications: An input instance consists of a list L(1..n) of elements. The output
consists of an index i such that L(i) has maximum value. If there are multiple entries
with this same value, then any one of them is returned.

2) Basic Steps: You decide on the two-finger method. Your right finger runs down the
list.

3) Measure of Progress: The measure of progress is how far along the list your right
finger is.

4) The Loop Invariant: The loop invariant states that your left finger points to one of
the largest entries encountered so far by your right finger.

5) Main Steps: Each iteration, you move your right finger down one entry in the list.
If your right finger is now pointing at an entry that is larger then the left finger’s entry,
then move your left finger to be with your right finger.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84931-9 - How to Think About Algorithms
Jeff Edmonds
Excerpt
More information

http://www.cambridge.org/0521849314
http://www.cambridge.org
http://www.cambridge.org

Measures of Progress and Loop Invariants

11

6) Make Progress: You make progress because your right finger moves one entry.

7) Maintain Loop Invariant: You know that the loop invariant has been maintained as
follows. For each step, the new left finger element is Max(old left finger element, new
element). By the loop invariant, this is Max(Max(shorter list), new element). Mathe-
matically, this is Max(longer list).

8) Establishing the Loop Invariant: You initially establish the loop invariant by point-
ing both fingers to the first element.

9) Exit Condition: You are done when your right finger has finished traversing the list.

10) Ending: In the end, we know the problem is solved as follows. By the exit condi-
tion, your right finger has encountered all of the entries. By the loop invariant, your left
finger points at the maximum of these. Return this entry.

11) Termination and Running Time: The time required is some constant times the
length of the list.

12) Special Cases: Check what happens when there are multiple entries with the
same value or when n = 0 or n = 1.

13) Coding and Implementation Details:

algorithm Find Max(L)

〈 pre-cond 〉: L is an array of n values.
〈 post-cond 〉: Returns an index with maximum value.

begin
i = 1; j = 1
loop

〈loop-invariant 〉: L[i] is max in L[1.. j].
exit when (j ≥ n)
% Make progress while maintaining the loop invariant
j = j + 1
if(L[i] < L[j]) then i = j

end loop
return(i)

end algorithm

14) Formal Proof: The correctness of the algorithm follows from the above steps.

A New Way of Thinking: You may be tempted to believe that measures of progress
and loop invariants are theoretical irrelevancies. But industry, after many expensive
mistakes, has a deeper appreciation for the need for correctness. Our philosophy is
to learn how to think about, develop, and describe algorithms in such a way that
their correctness is transparent. For this, measures of progress and loop invariants are

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84931-9 - How to Think About Algorithms
Jeff Edmonds
Excerpt
More information

http://www.cambridge.org/0521849314
http://www.cambridge.org
http://www.cambridge.org

