Introduction

From determining the cheapest way to make a hot dog to monitoring the workings of a factory, there are many complex computational problems to be solved. Before executable code can be produced, computer scientists need to be able to design the algorithms that lie behind the code, be able to understand and describe such algorithms abstractly, and be confident that they work correctly and efficiently. These are the goals of computer scientists.

A Computational Problem: A specification of a computational problem uses preconditions and postconditions to describe for each legal input instance that the computation might receive, what the required output or actions are. This may be a function mapping each input instance to the required output. It may be an optimization problem which requires a solution to be outputted that is "optimal" from among a huge set of possible solutions for the given input instance. It may also be an ongoing system or data structure that responds appropriately to a constant stream of input.

Example: The sorting problem is defined as follows:

Preconditions: The input is a list of n values, including possible repetitions.

Postconditions: The output is a list consisting of the same n values in non-decreasing order.

An Algorithm: An algorithm is a step-by-step procedure which, starting with an input instance, produces a suitable output. It is described at the level of detail and abstraction best suited to the human audience that must understand it. In contrast, code is an implementation of an algorithm that can be executed by a computer. Pseudocode lies between these two.

An Abstract Data Type: Computers use zeros and ones, ANDs and ORs, IFs and GOTOS. This does not mean that we have to. The description of an algorithm may talk of abstract objects such as integers, reals, strings, sets, stacks, graphs, and trees;
Introduction

abstract operations such as "sort the list," "pop the stack," or "trace a path"; and abstract relationships such as greater than, prefix, subset, connected, and child. To be useful, the nature of these objects and the effect of these operations need to be understood. However, in order to hide details that are tedious or irrelevant, the precise implementations of these data structure and algorithms do not need to be specified. For more on this see Chapter 3.

Correctness: An algorithm for the problem is correct if for every legal input instance, the required output is produced. Though a certain amount of logical thinking is required, the goal of this text is to teach how to think about, develop, and describe algorithms in such way that their correctness is transparent. See Chapter 28 for the formal steps required to prove correctness, and Chapter 22 for a discussion of forall and exist statements that are essential for making formal statements.

Running Time: It is not enough for a computation to eventually get the correct answer. It must also do so using a reasonable amount of time and memory space. The running time of an algorithm is a function from the size n of the input instance given to a bound on the number of operations the computation must do. (See Chapter 23.) The algorithm is said to be feasible if this function is a polynomial like $Time(n) = \Theta(n^2)$, and is said to be infeasible if this function is an exponential like $Time(n) = \Theta(2^n)$. (See Chapters 24 and 25 for more on the asymptotics of functions.) To be able to compute the running time, one needs to be able to add up the times taken in each iteration of a loop and to solve the recurrence relation defining the time of a recursive program. (See Chapter 26 for an understanding of $\sum_{i=1}^{n} i = \Theta(n^2)$, and Chapter 27 for an understanding of $T(n) = 2T(\frac{n}{2}) + n = \Theta(n \log n)$.)

Meta-algorithms: Most algorithms are best described as being either iterative or recursive. An iterative algorithm (Part One) takes one step at a time, ensuring that each step makes progress while maintaining the loop invariant. A recursive algorithm (Part Two) breaks its instance into smaller instances, which it gets a friend to solve, and then combines their solutions into one of its own.

Optimization problems (Part Three) form an important class of computational problems. The key algorithms for them are the following. Greedy algorithms (Chapter 16) keep grabbing the next object that looks best. Recursive backtracking algorithms (Chapter 17) try things and, if they don't work, backtrack and try something else. Dynamic programming (Chapter 18) solves a sequence of larger and larger instances, reusing the previously saved solutions for the smaller instances, until a solution is obtained for the given instance. Reductions (Chapter 20) use an algorithm for one problem to solve another. Randomized algorithms (Chapter 21) flip coins to help them decide what actions to take. Finally, lower bounds (Chapter 7) prove that there are no faster algorithms.
PART ONE

Iterative Algorithms and Loop Invariants
Iterative Algorithms: Measures of Progress and Loop Invariants

Using an iterative algorithm to solve a computational problem is a bit like following a road, possibly long and difficult, from your start location to your destination. With each iteration, you have a method that takes you a single step closer. To ensure that you move forward, you need to have a measure of progress telling you how far you are either from your starting location or from your destination. You cannot expect to know exactly where the algorithm will go, so you need to expect some weaving and winding. On the other hand, you do not want to have to know how to handle every ditch and dead end in the world. A compromise between these two is to have a loop invariant, which defines a road (or region) that you may not leave. As you travel, worry about one step at a time. You must know how to get onto the road from any start location. From every place along the road, you must know what actions you will take in order to step forward while not leaving the road. Finally, when sufficient progress has been made along the road, you must know how to exit and reach your destination in a reasonable amount of time.

1.1 A Paradigm Shift: A Sequence of Actions vs. a Sequence of Assertions

Understanding iterative algorithms requires understanding the difference between a loop invariant, which is an assertion or picture of the computation at a particular point in time, and the actions that are required to maintain such a loop invariant. Hence, we will start with trying to understand this difference.
Iterative Algorithms and Loop Invariants

One of the first important paradigm shifts that programmers struggle to make is from viewing an algorithm as a sequence of actions to viewing it as a sequence of snapshots of the state of the computer. Programmers tend to fixate on the first view, because code is a sequence of instructions for action and a computation is a sequence of actions. Though this is an important view, there is another. Imagine stopping time at key points during the computation and taking still pictures of the state of the computer. Then a computation can equally be viewed as a sequence of such snapshots. Having two ways of viewing the same thing gives one both more tools to handle it and a deeper understanding of it. An example of viewing a computation as an alteration between assertions about the current state of the computation and blocks of actions that bring the state of the computation to the next state is shown here.

Max(a, b, c)

PreCond: Input has 3 numbers.

\[m = a \]

assert: \(m \) is max in \(\{a\} \).

if \((b > m)\)

\[m = b \]

end if

assert: \(m \) is max in \(\{a, b\} \).

if \((c > m)\)

\[m = c \]

end if

assert: \(m \) is max in \(\{a, b, c\} \).

return \(m \)

PostCond: return max in \(\{a, b, c\} \).

end algorithm

The Challenge of the Sequence-of-Actions View: Suppose one is designing a new algorithm or explaining an algorithm to a friend. If one is thinking of it as sequence of actions, then one will likely start at the beginning: Do this. Do that. Do this. Shortly one can get lost and not know where one is. To handle this, one simultaneously needs to keep track of how the state of the computer changes with each new action. In order to know what action to take next, one needs to have a global plan of where the computation is to go. To make it worse, the computation has many IFs and LOOPS so one has to consider all the various paths that the computation may take.

The Advantages of the Sequence of Snapshots View: This new paradigm is useful one from which one can think about, explain, or develop an algorithm.

Pre- and Postconditions: Before one can consider an algorithm, one needs to carefully define the computational problem being solved by it. This is done with pre- and postconditions by providing the initial picture, or assertion, about the input instance and a corresponding picture or assertion about required output.

Start in the Middle: Instead of starting with the first line of code, an alternative way to design an algorithm is to jump into the middle of the computation and to draw a static picture, or assertion, about the state we would like the computation to be in at this time. This picture does not need to state the exact value of each variable.
Measures of Progress and Loop Invariants

Instead, it gives general properties and relationships between the various data structures that are key to understanding the algorithm. If this assertion is sufficiently general, it will capture not just this one point during the computation, but many similar points. Then it might become a part of a loop.

Sequence of Snapshots: Once one builds up a sequence of assertions in this way, one can see the entire path of the computation laid out before one.

Fill in the Actions: These assertions are just static snapshots of the computation with time stopped. No actions have been considered yet. The final step is to fill in actions (code) between consecutive assertions.

One Step at a Time: Each such block of actions can be executed completely independently of the others. It is much easier to consider them one at a time than to worry about the entire computation at once. In fact, one can complete these blocks in any order one wants and modify one block without worrying about the effect on the others.

Fly In from Mars: This is how you should fill in the code between the ith and the $i + 1$st assertions. Suppose you have just flown in from Mars, and absolutely the only thing you know about the current state of your computation is that the ith assertion holds. The computation might actually be in a state that is completely impossible to arrive at, given the algorithm that has been designed so far. It is allowing this that provides independence between these blocks of actions.

Take One Step: Being in a state in which the ith assertion holds, your task is simply to write some simple code to do a few simple actions, that change the state of the computation so that the $i + 1$st assertion holds.

Proof of Correctness of Each Step: The proof that your algorithm works can also be done one block at a time. You need to prove that if time is stopped and the state of the computation is such that the ith assertion holds and you start time again just long enough to execute the next block of code, then when you stop time again the state of the computation will be such that the $i + 1$st assertion holds. This proof might be a formal mathematical proof, or it might be informal handwaving. Either way, the formal statement of what needs to be proved is as follows:

$$\langle i\text{th} - \text{assertion}\rangle \& code_i \Rightarrow \langle i + 1\text{st} - \text{assertion}\rangle$$

Proof of Correctness of the Algorithm: All of these individual steps can be put together into a whole working algorithm. We assume that the input instance given meets the precondition. At some point, we proved that if the precondition holds and the first block of code is executed, then the state of the computation will be such
Iterative Algorithms and Loop Invariants

that first assertion holds. At some other point, we proved that if the first assertion holds and the second block of code is executed then the state of the computation will be such that second assertion holds. This was done for each block. All of these independently proved statements can be put together to prove that if initially the input instance meets the precondition and the entire code is executed, then in the end the state of the computation will be such that the postcondition has been met. This is what is required to prove that algorithm works.

1.2 The Steps to Develop an Iterative Algorithm

Iterative Algorithms: A good way to structure many computer programs is to store the key information you currently know in some data structure and then have each iteration of the main loop take a step towards your destination by making a simple change to this data.

Loop Invariant: A loop invariant expresses important relationships among the variables that must be true at the start of every iteration and when the loop terminates. If it is true, then the computation is still on the road. If it is false, then the algorithm has failed.

The Code Structure: The basic structure of the code is as follows.

begin routine
 ⟨pre-cond⟩
 codepre-loop % Establish loop invariant
 loop
 ⟨loop-invariant⟩
 exit when ⟨exit-cond⟩
 code_loop % Make progress while maintaining the loop invariant
 end loop
 codepost-loop % Clean up loose ends
 ⟨post-cond⟩
end routine

Proof of Correctness: Naturally, you want to be sure your algorithm will work on all specified inputs and give the correct answer.

Running Time: You also want to be sure that your algorithm completes in a reasonable amount of time.

The Most Important Steps: If you need to design an algorithm, do not start by typing in code without really knowing how or why the algorithm works. Instead, I recommend first accomplishing the following tasks. See Figure 1.1. These tasks need to fit
Measures of Progress and Loop Invariants

<table>
<thead>
<tr>
<th>Define Problem</th>
<th>Define Loop Invariants</th>
<th>Define Measure of Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Define Step</th>
<th>Define Exit Condition</th>
<th>Maintain Loop Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Make Progress</th>
<th>Initial Conditions</th>
<th>Ending</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.1: The requirements of an iterative algorithm.

together in very subtle ways. You may have to cycle through them a number of times, adjusting what you have done, until they all fit together as required.

1) **Specifications**: What problem are you solving? What are its pre- and postconditions—i.e., where are you starting and where is your destination?

2) **Basic Steps**: What basic steps will head you more or less in the correct direction?

3) **Measure of Progress**: You must define a measure of progress: where are the mile markers along the road?

4) **The Loop Invariant**: You must define a loop invariant that will give a picture of the state of your computation when it is at the top of the main loop, in other words, define the road that you will stay on.

5) **Main Steps**: For every location on the road, you must write the pseudocode \(\text{code}_{\text{loop}} \) to take a single step. You do not need to start with the first location. I recommend first considering a typical step to be taken during the middle of the computation.

6) **Make Progress**: Each iteration of your main step must make progress according to your measure of progress.

7) **Maintain Loop Invariant**: Each iteration of your main step must ensure that the loop invariant is true again when the computation gets back to the top of the loop. (Induction will then prove that it remains true always.)

8) **Establishing the Loop Invariant**: Now that you have an idea of where you are going, you have a better idea about how to begin. You must write the pseudocode
Iterative Algorithms and Loop Invariants

code\textsubscript{pre-loop} to initially establish the loop invariant. How do you get from your house onto the correct road?

9) Exit Condition: You must write the condition \(\textit{exit-cond}\) that causes the computation to break out of the loop.

10) Ending: How does the exit condition together with the invariant ensure that the problem is solved? When at the end of the road but still on it, how do you produce the required output? You must write the pseudocode \(\textit{codepost-loop}\) to clean up loose ends and to return the required output.

11) Termination and Running Time: How much progress do you need to make before you know you will reach this exit? This is an estimate of the running time of your algorithm.

12) Special Cases: When first attempting to design an algorithm, you should only consider one general type of input instances. Later, you must cycle through the steps again considering other types of instances and special cases. Similarly, test your algorithm by hand on a number of different examples.

13) Coding and Implementation Details: Now you are ready to put all the pieces together and produce pseudocode for the algorithm. It may be necessary at this point to provide extra implementation details.

14) Formal Proof: If the above pieces fit together as required, then your algorithm works.

\begin{table}[h]
\centering
\begin{tabular}{|p{10cm}|}
\hline
\textbf{EXAMPLE 1.2.1 The Find-Max Two-Finger Algorithm to Illustrate These Ideas} \\
\hline
1) Specifications: An input instance consists of a list \(L(1..n)\) of elements. The output consists of an index \(i\) such that \(L(i)\) has maximum value. If there are multiple entries with this same value, then any one of them is returned. \\
2) Basic Steps: You decide on the two-finger method. Your right finger runs down the list. \\
3) Measure of Progress: The measure of progress is how far along the list your right finger is. \\
4) The Loop Invariant: The loop invariant states that your left finger points to one of the largest entries encountered so far by your right finger. \\
5) Main Steps: Each iteration, you move your right finger down one entry in the list. If your right finger is now pointing at an entry that is larger then the left finger's entry, then move your left finger to be with your right finger. \\
\hline
\end{tabular}
\end{table}
Measures of Progress and Loop Invariants

6) Make Progress: You make progress because your right finger moves one entry.

7) Maintain Loop Invariant: You know that the loop invariant has been maintained as follows. For each step, the new left finger element is Max(old left finger element, new element). By the loop invariant, this is Max(Max(shorter list), new element). Mathematically, this is Max(longer list).

8) Establishing the Loop Invariant: You initially establish the loop invariant by pointing both fingers to the first element.

9) Exit Condition: You are done when your right finger has finished traversing the list.

10) Ending: In the end, we know the problem is solved as follows. By the exit condition, your right finger has encountered all of the entries. By the loop invariant, your left finger points at the maximum of these. Return this entry.

11) Termination and Running Time: The time required is some constant times the length of the list.

12) Special Cases: Check what happens when there are multiple entries with the same value or when \(n = 0 \) or \(n = 1 \).

13) Coding and Implementation Details:

```plaintext
algorithm FindMax(L)
⟨pre-cond⟩: L is an array of n values.
⟨post-cond⟩: Returns an index with maximum value.
begin
  i = 1; j = 1
  loop
    ⟨loop-invariant⟩: L[i] is max in L[1..j].
    exit when (j ≥ n)
    % Make progress while maintaining the loop invariant
    j = j + 1
    if( L[i] < L[j] ) then i = j
  end loop
  return(i)
end algorithm
```

14) Formal Proof: The correctness of the algorithm follows from the above steps.

A New Way of Thinking: You may be tempted to believe that measures of progress and loop invariants are theoretical irrelevanices. But industry, after many expensive mistakes, has a deeper appreciation for the need for correctness. Our philosophy is to learn how to think about, develop, and describe algorithms in such a way that their correctness is transparent. For this, measures of progress and loop invariants are